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Chapter 1

Introduction

The Toda lattice equation is a nonlinear evolution equation describing an infinite system
of points on a line that interact through an exponential force; it was introduced by Toda
[46] in the search for a simple explanation of the Fermi-Pasta-Ulam phenomenon, one
of the most important events leading to the development of soliton theory.

The Hamiltonian is given by

H =
X

n

1
2
P 2

n + eQ
n�1�Q

n (1.1)

where the canonical coordinates are Qn, the displacement of the n-th mass from equi-
librium, and Pn, its momentum. The corresponding equation, in the coordinates
vn = Qn�1

�Qn and un = �Pn, can be written as a system

@

@t
un = ev

n+1 � ev
n (1.2a)

@

@t
vn = un � un�1

, (1.2b)

with n 2 Z.

It was soon realized that this equation is an example of completely integrable sys-
tem: it admits an infinite number of conserved quantities [30, 21], can be solved for
rapidly decreasing boundary conditions through the method of inverse scattering [22]
and admits explicit quasi-periodic solutions by algebro-geometric methods [16, 5, 34].

The Toda lattice equation can be seen as the first element of a hierarchy of com-
muting flows, the Toda lattice hierarchy1. These commuting flows can be defined by
the Lax pair formalism

✏
d

dtq
L = [Aq, L], (1.3)

hence they are isospectral deformations of the Lax operator

L = ⇤ + u(x) + ev(x)⇤�1 (1.4)
1
We will also call it Toda chain hierarchy, to distinguish it from the bigraded and the two-dimensional

Toda hierarchies described in the following.
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where we have used the continuous notation u(n✏) = un and ⇤ is the shift operator,
⇤f(x) = f(x+ ✏). The di↵erence operators Aq are obtained by taking the positive part
of powers of L, Aq = 1

(q+1)!

(Lq+1)
+

.

It is well known that this hierarchy admits a bihamiltonian structure [35], i.e. a
pair of compatible Poisson brackets {, }i, i = 1, 2 and a set of Hamiltonians hq that
give the flows defined above. The Hamiltonians can be expressed in terms of the Lax
operator by

hq =
1

(q + 2)!

Z

dx Res Lq+2 (1.5)

where the residue of a di↵erence operator A =
P

k ak⇤k is given by Res A = a
0

and the
flows are obtained through the first bracket by d

dt
q

· = {·, hq}1

. The pencil of Poisson
brackets actually defines the whole set of flows since it gives a recursion relation

{·, hq�1

}
2

= (q + 1){·, hq}1

(1.6)

from which all the Hamiltonians can be implicitly obtained beginning from a Casimir
of the first bracket.

A new set of non-local flows was recently introduced independently by Zhang [48]
and Getzler [27] by providing an ansatz for the first nontrivial Hamiltonian and then
using the Lenard-Magri recursion relation. One actually expects that such flows exist,
since the first Poisson bracket has two Casimirs from which the recursion relation could
start; however the second Casimir cannot be used as a starting point since it is also a
Casimir for the second bracket. We call the set of the usual Toda flows and of the new
non-local flows Extended Toda hierarchy.

Let us look for a Lax pair formulation of the non-local flows. The form of the
Lax pairs is suggested by an extension of the dispersionless Toda hierarchy that was
obtained in [20] in relation with the genus zero approximation of the topological CP1

model.

Our first result is a construction of the logarithm of the di↵erence operator (1.4);
we define

log L = � ✏
2
(PxP�1 �QxQ�1) (1.7)

where P = 1 + p
1

(x)⇤�1 + . . . and Q = q
0

(x) + q
1

(x)⇤ + . . . are the dressing operators
defined by

L = P⇤P�1 = Q⇤�1Q�1. (1.8)

We show that this logarithm is a di↵erence operator of the form

log L =
X

k2Z
wk⇤k (1.9)

where wk are power series in ✏ with coe�cients given by di↵erential polynomials in u,
v, ev and e�v (i.e. polynomials in these symbols and their derivatives).

The new isospectral deformations of L are written in the Lax form by ✏ d
d˜t

q

L =

[Ãq, L], where

Ãq =
2
q!

(Lq(log L� cq))+ (1.10)
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and cq =
Pq

k=1

1

k , c
0

= 0.

We prove that these flows are Hamiltonian with respect to both Poisson structures
of the Toda chain and the Hamiltonians can be expressed in terms of L and log L by

h̃q =
2

(q + 1)!

Z

dx Res(Lq+1(log L� cq+1

)). (1.11)

Moreover, they satisfy the recursion relation

{·, h̃q�1

}
2

= q{·, h̃q}1

+ 2{·, hq�1

}
1

. (1.12)

From this formula and the recursion relation (1.6) it follows that all the Hamiltonians
hq and h̃q are in involution among themselves.

An important object connected with the integrable hierarchies is the tau function,
from which all the relevant quantities like the Hamiltonians and the dependent variables
can be obtained by derivation. We show that for any solution of the extended Toda
hierarchy there exists a tau function ⌧ ; then we obtain, for example, that the dependent
variables can be expressed in terms of the tau function by

v = ⇤�1(⇤� 1)2 log ⌧ u = ✏(⇤� 1)
@ log ⌧
@t

0

. (1.13)

The wave operators are di↵erential-di↵erence operators P̂ , Q̂ defined in analogy
with the wave matrices in the context of two-dimensional Toda [47]. We show that all
the equations of the extended Toda hierarchy can be encapsulated in a single bilinear
relation

P̂ (t) · P̂�1(t0) = Q̂(t) · Q̂�1(t0) (1.14)

where t = (t
0

, t
1

, . . . ; t̃
0

, . . . ), plus a constraint

P̂⇤P̂�1 = Q̂⇤�1Q̂�1. (1.15)

Moreover, we find that similar bilinear relations hold for the wave functions  ̂,  ̂⇤, �̂,
�̂⇤.

Finally, we consider the Darboux transformations of the Lax operator L and we
obtain explicit soliton solutions for the extended Toda hierarchy.

A natural generalization of the Toda chain hierarchy is given by the bigraded Toda
hierarchy. The Lax operator in this case is

L = ⇤N + uN�1

⇤N�1 + · · ·+ u�M⇤�M (1.16)

for two positive integers N , M . We define two fractional powers of L by

(L
1
N )N = L and (L

1
M )M = L (1.17)

of the form L
1
N = ⇤ + a

0

+ a
1

⇤�1 + . . . and L
1
M = b�1

⇤�1 + b
0

+ . . . . Then we define
the logarithm of L by the same formula used in the Toda chain case (1.7), where now
the dressing operators are defined by

L = P⇤NP�1 = Q⇤�MQ�1. (1.18)
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We prove that the coe�cients wk in (1.9) and the coe�cients ak, bk are ✏-power series
of di↵erential polynomials in uN , . . . , u�M+1

, (u�M )
1
M , (u�M )�

1
M and log u�M .

We then define the flows of the extended bigraded hierarchy through the Lax pair
formalism

✏
@L

@t↵,q
= [A↵,q, L] (1.19)

with

A↵,q =
�(2� ↵

N )
�(q + 2� ↵

N )
(Lq+1� ↵

N )
+

for ↵ = N � 1, . . . , 0 (1.20a)

A↵,q =
��(2 + ↵

M )
�(q + 2 + ↵

M )
(Lq+1+

↵

M )� for ↵ = 0, . . . ,�M + 1 (1.20b)

A�M,q =
1
q!

[Lq(log L� 1
2
(

1
M

+
1
N

)cq)]+ (1.20c)

and q > 0.

To obtain the associated bihamiltonian structure we make use of the R-matrix
techniques developed first by Semenov-Tian-Shansky [42] and then generalized to the
non-unitary case in [40, 36]. Given an associative algebra G with an invariant non-
degenerate inner product we say that the linear endomorphism R 2 EndG satisfies the
modified Yang-Baxter equation if

[R(X), R(Y )]�R([X, Y ]R) = �[X, Y ] (1.21)

for every X, Y 2 G, where [X, Y ]R := [R(X), Y ]+ [X, R(Y )]. In particular if R satisfies
the modified Yang-Baxter equation then [, ]R gives a Lie algebra structure on G (di↵erent
from the natural one given by the commutator) and hence defines on G⇤ = G the usual
Lie-Poisson (Kirillov-Konstant) linear bracket

{f, g}
1

(L) = (L, [df, dg]R). (1.22)

The theorems proved in [40] state that if moreover the skew-symmetric part S = 1

2

(R�
R⇤) of R satisfies the modified Yang-Baxter equation then we can define on G a second
Poisson bracket {, }

2

compatible with the first one and quadratic in L.

We apply this construction to the algebra A+ of formal di↵erence operators of the
form

X

k<+1
uk⇤k; (1.23)

the splitting A+ = (A+)
+

� (A+)� of the algebra A+ gives an R 2 EndG defined by
R(X) = X

+

�X� such that both R and its skew-symmetric part S satisfy the modified
Yang-Baxter equation. Thus we obtain a pencil of Poisson brackets on A+.

We then perform a Dirac reduction of these Poisson brackets to the a�ne subspace
of A+ given by operators of the form (1.16) and obtain the following pair of compatible
Poisson brackets in the variables uN�1

, . . . , u�M

{un(x), um(y)}
1

= Cn,m[un+m(⇤n�(x� y))� (⇤�mun+m�(x� y))], (1.24)
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{un(x), um(y)}
2

= 2un((⇤n + 1)(⇤�m � 1)um�(x� y))

+ 4
X

l<m

�

un+m�l(⇤n�lul�(x� y))� ul(⇤l�mun+m�l�(x� y))
�

� 2
�

un(1 + ⇤�N )(1 + ⇤N )(⇤�N � ⇤N )�1(⇤n � 1)(1� ⇤�m)um�(x� y)
�

(1.25)

where Cn,m =

(

�1 n 6 0
1 n > 0

+

(

�1 m 6 0
1 m > 0.

We relate the Lax and the Hamiltonian representations of the flows using the first
Poisson bracket, i.e. we obtain that

d

dt↵,q
un = {un, h̄↵,q}1

(1.26)

where h̄↵,q =
R

dx h↵,q and the Hamiltonian densities are given by

h↵,q =
1
2

�(2� ↵
N )

�(q + 3� ↵
N )

Res(Lq+2� ↵

N ) for ↵ = N � 1, · · · , 0 (1.27a)

h↵,q =
1
2

�(2 + ↵
M )

�(q + 3 + ↵
M )

Res(Lq+2+

↵

M ) for ↵ = 0, · · · ,�M + 1 (1.27b)

h�M,q =
1
2

1
(q + 1)!

Res

✓

Lq+1(log L� 1
2
(

1
M

+
1
N

)cq+1

)
◆

. (1.27c)

for cq =
Pq

j=1

1

j and c
0

= 0. For N = M = 1 we prove that this bihamiltonian structure
coincides with that of the standard Toda chain.

Finally we show that these Hamiltonian densities satisfy the tau symmetry

{h↵,p�1

, h̄�,q}1

= {h�,q�1

, h̄↵,p}1

. (1.28)

This gives a possibility to define the tau function for an arbitrary solution to the
hierarchy.

A further important step for the description of the bihamiltonian structure of this
hierarchy should be the determination of the recursion relations, i.e. the generalization
of formulas (1.6) and (1.12). The reduction of the second Poisson bracket to an a�ne
subspace needs a Dirac correction term, that is expected to produce some non-standard
recursion relation like (1.12). However the explicit approach used to derive the recur-
sion relations in the Toda chain case could not be generalized to the general bigraded
hierarchy.

In the case M = 0, Poisson structures related to those defined here for the bigraded
Toda were considered by Frenkel and Reshetikhin [24, 23], in the context of deforma-
tions of W -algebras (see Remark 47) . The R-matrix approach has been applied to the
theory of the Hamiltonian structures associated with di↵erence operators also in [37, 1].
However the structure of the corresponding integrable hierarchy was not considered.

We then consider the two-dimensional Toda hierarchy and its generalizations. In
its simplest form this hierarchy has been first studied by Ueno and Takasaki in [47]. In
this case one has two Lax operators

L = ⇤ + u
0

+ u�1

⇤�1 + . . . L̄ = ū�1

⇤�1 + ū
0

+ ū
1

⇤ + . . . (1.29)
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and two sets of times tq, t̄q.

Two sets of flows, denoted by the times tq and t̄q with q > 0, are usually defined by
the following Lax equations

Lt
q

= [(Lq)
+

, L] L̄t
q

= [(Lq)
+

, L̄] (1.30)

and

L
¯t
q

= [�(L̄q)�, L] L̄
¯t
q

= [�(L̄q)�, L̄]. (1.31)

To obtain a bihamiltonian structure in this case we introduce the algebra A+�A�

of pairs of di↵erence operators of the form

(
X

k<+1
uk⇤k,

X

k>�1
ūk⇤k) (1.32)

and then define R 2 End(A+ �A�) by

R(X, X̄) = (X
+

�X� + 2X̄�, X̄� � X̄
+

+ 2X
+

) (1.33)

where (X, X̄) 2 A+ �A�.

This R-matrix comes from the following non-trivial splitting of the algebra

A+ �A� =
⇣

diag(A0 �A0)
⌘

�
⇣

(A+)� � (A�)
+

⌘

(1.34)

i.e., it is given by R = P � P̃ , where P and P̃ are the projections operators given by

P (X, X̄) = (X
+

+ X̄�, X
+

+ X̄�) P̃ (X, X̄) = (X� � X̄�, X̄
+

�X
+

); (1.35)

hence R automatically satisfies the modified Yang-Baxter equation. We show that also
its skew-symmetric part satisfies the same equation, hence we obtain, by the general
theorems mentioned above, two compatible Poisson structures on the algebra A+�A�.

Finally, by Dirac reduction to the a�ne subspace of couples of operators (L, L̄) of
the form

L = ⇤N + uN�1

⇤N�1 + . . . L̄ = ū�M⇤�M + ū�M+1

⇤�M+1 + . . . (1.36)

for two positive integers N,M , we obtain a Poisson pencil on the variables un for n < N
and ūm for m > �M .

The (bigraded) Toda hierarchy fits in the general framework of classification of bi-
hamiltonian integrable systems starting from their dispersionless limit developed by
Dubrovin and Zhang in [19]. When the dispersionless limit of the bihamiltonian struc-
ture is given by a pencil of Poisson brackets of hydrodynamic type (as in the Toda
case), then it is in one to one correspondence with a Frobenius manifold [13].

It was show in [18] that a Frobenius manifold structure can be constructed on the
orbit space of the extended a�ne Weyl groups associated to a root system (which in
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turn is labelled by a Dynkin diagram) with a fixed root. In particular the extended
(N,M)-bigraded Toda hierachy turns out to be the dispersive hierarchy corresponding
to the Dynkin diagram AN+M�1

with the N -th vertex fixed.

An interesting problem is the determination of the full dispersive hierarchies corre-
sponding to all the Dynkin diagrams (Al, Bl, Cl, ...) considered in [18].

In the last Chapter we study the dispersionless limit of the hierarchies introduced
before and briefly consider the structure of the related Frobenius manifolds.

We first consider the dispersionless bigraded Toda hierarchy. After writing down
the explicit form of the dispersionless brackets and of the associated metrics, we find
their generating functions. For example, the generating functions of the first and second
(contravariant) metrics can be written as

(d�(p), d�(q))
1

= 2
�0(q)� �0(p)
p�1 � q�1

(1.37)

and

(d�(p), d�(q))
2

=
4
N

pq�0(p)�0(q) +
4

p�1 � q�1

�

�(p)�0(q)� �(q)�0(p)
�

(1.38)

where
�(p) = pN + · · ·+ u�Mp�M (1.39)

and
d�(p) = duN�1

pN�1 + · · ·+ du�Mp�M . (1.40)

To provide a concrete realization of the Frobenius manifold associated to this pencil
of flat contravariant metrics we consider a particular case of Hurwitz space. A general
structure of Frobenius manifold was defined on such spaces in [10]. We prove that
the pencil of metrics obtained from the bihamiltonian structure of the bigraded Toda
hierarchy is equal to the pencil naturally defined on the Hurwitz space fM

0;N�1,M�1

;
hence the Frobenius manifold associated to the dispersionless limit of the bigraded
Toda hierarchy coincides with the one defined on this Hurwitz space.

It was shown in [18] that this Frobenius structure is moreover isomorphic with
the one that has been defined on the orbit space of the extended a�ne Weyl group
fW (N)(AN+M�1

) associated to the irreducible reduced root system AN+M�1

with the
N -th root fixed.

We then consider the dispersionless limit of the two-dimensional Toda hierarchy.
As in the previous case we derive the generating functions for the Poisson brackets and
the associated metrics.

We prove that the first metric is non-degenerate and find a new set of coordinates
w

0

, w�1

and vk, k 2 Z in which it has the form

X

n,m2Z
(n + m)vn+m

@

@vn

@

@vm
+ w�1

✓

@

@w
0

@

@w�1

+
@

@w�1

@

@w
0

◆

(1.41)
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i.e. it splits in the orthogonal sum of two blocks. The first dispersionless Poisson
bracket also splits in two independent parts: for the coordinates wk it coincides with
the first Poisson structure of the Toda chain hierarchy while the part corresponding to
the coordinates vk has the form

{vn(x), vm(y)}disp
1

= �2[nvn+m(x) + mvn+m(y)]�0(x� y) n, m 2 Z. (1.42)

If we pass to the coordinates given by the Fourier series with coe�cients vn(x)

v(x, y) =
X

n2Z
vn(x)einy (1.43)

we obtain the following expression for the infinite dimensional part of the first disper-
sionless Poisson bracket

{v(x
1

, y
1

), v(x
2

, y
2

)}disp
1

= �4⇡i
⇥

@x1v(x
1

, y
1

) · �(x
1

� x
2

)�0(y
1

� y
2

)
� @y1v(x

1

, y
1

) · �0(x
1

� x
2

)�(y
1

� y
2

)
⇤

. (1.44)

We finally show that this bracket is the one naturally associated with the algebra of
divergence-free vector fields on the cylinder, i.e. with the dynamics of a two dimensional
incompressible fluid.

Layout of the thesis The layout of the thesis is the following.

In Chapter 2 we introduce the Toda chain hierarchy and its extended version. We
motivate this extension by examining the dispersionless limit and the structure of the
Casimirs of the hierarchy. We introduce a formal logarithm of the di↵erence Lax
operator L and define the new flows through the Lax pair formalism. In Theorem 7
we show that the coe�cients of the logarithm are uniquely determined power series
in ✏ of di↵erential polynomials. Then we prove that these flows have a bihamiltonian
formulation (Theorem 12), we show the tau-symmetry (Theorem 17) of the Hamiltonian
densities and hence derive the existence of a tau-function for the hierarchy, expressed in
terms of the Lax operator. We then derive the bilinear relations for the wave operators
and the wave functions and finally we obtain the soliton solutions by the method of
Darboux transformations of the Lax operator L.

In Chapter 3 we define the bigraded Toda hierarchy. First we generalize the def-
inition of the logarithm log L and introduce two fractional powers L

1
N and L

1
M . In

Theorems 27 and 28 we show that these operators have uniquely defined coe�cients
that are power series in ✏ of di↵erential polynomials. Then we introduce the flows by
the Lax pair formalism. After a brief summary of some results of the R-matrix theory,
we define an R-matrix on the algebra A+ of di↵erence operators and we obtain three
compatible Poisson brackets on A+. Then we perform a Dirac reduction to an a�ne
subspace of A+, getting a pencil of Poisson brackets for the bigraded Toda (Theorem
45). We finally obtain in Theorem 52 the Hamiltonian representation of the Lax flows
through the first Poisson structure, and in Theorem 57 we prove the tau-symmetry of
the Hamiltonian densities.
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In Chapter 4 we obtain the bihamiltonian structure for the two-dimensional Toda
hierarchy by applying again the R-matrix construction. We first define the relevant
algebra A+ � A� and the define an R-matrix on it, showing that it comes from a non
trivial splitting. We obtain explicit expressions for the pencil of Poisson brackets on
A+ � A� and, by Dirac reduction to an a�ne subspace, we derive a pencil of Poisson
brackets for the (M,N)-bigraded two-dimensional Toda hierarchy (Theorem 63).

In Chapter 5 we consider the dispersionless limit of the bigraded and of the two-
dimensional Toda hierarchies. We write explicitly the Poisson brackets and the asso-
ciated metrics and we obtain their generating functions. We then briefly recall the
definition of the Hurwitz spaces and of the natural Frobenius manifold structure on
them and show that it coincides with the Frobenius manifold structure associated with
the Poisson pencil of the bigraded Toda hierarchy. In the case of the two-dimensional
Toda hierarchy, after having obtained the generating functions for the Poisson brackets
and for the metrics, we prove that the first metric is non-degenerate. We then define
a new set of coordinates in which the first Poisson bracket has a simple structure and
we show that it is actually given by the direct sum of the first bracket of the bigraded
hierarchy and of the Poisson bracket associated with the dynamics of an incompressible
fluid.

In the final Chapter we review open problems and perspectives.

11



Chapter 2

Extended Toda hierarchy

In this chapter we introduce the Toda (chain) hierarchy and we extend it by adding an
infinite number of non-local commuting flows.

The Toda chain hierarchy is associated to the discrete Lax operator

Lnm = �n+1,m + un�n,m + ev
n�n�1,m (2.1)

where the dynamical variables are given by un and vn for n 2 Z or n 2 Zk in the case
of periodic boundary conditions.

The flows of the hierarchy are given by the isospectral deformations of such operator,
i.e. by the Lax pair formalism Lt = [A,L]; this equation gives exactly the Toda equation
(1.2) if we take Anm = �n+1,m + un�n,m.

Instead of using discrete variables un and vn we will adopt a continuous notation
v(x), u(x) and we will denote by ✏ the lattice spacing; of course the two notations will
be related by u(n✏) = un. Since the usual equations of the Toda hierarchy are di↵erence
evolutionary equations, we will write them using the shift operator ⇤kf(x) = f(x+✏k).

These results are obtained in collaboration with B. Dubrovin and Y. Zhang [3] (see
also [2]).

2.1 The Toda chain hierarchy

In this section we define the usual Toda chain hierarchy in the Lax pair formulation
and consider its bihamiltonian structure. Since the Hamiltonians can be constructed
recursively using the Lenard-Magri recursion procedure starting from a Casimir of the
first Poisson bracket, one expects that another infinite set of Hamiltonians could be
constructed starting from the second Casimir of the first bracket. We comment on the
fact that this is impossible due to the ”resonance” of the Poisson pencil.

We introduce first the definition of the Toda chain hierarchy flows using the Lax
pair formalism.

12



Let’s denote with u(x) and v(x) the two dependent variables of the hierarchy. Recall
that the original dependent variables of the Toda hierarchy are un and vn, where n
identifies the n-th site of a lattice with spacing ✏; in the continuous limit described
above un = u(✏n) and vn = v(✏n). The functions u(x) and v(x) can be taken in the
space of periodic functions (x 2 S1) or on the real line (x 2 R) but for the moment we
disregard the boundary conditions.

The Lax operator, that acts on the space of functions f(x) of one variable x, is

L = ⇤ + u(x) + ev(x)⇤�1, (2.2)

where ⇤f(x) = f(x + ✏) is the shift operator.

Given any di↵erence operator A =
P

k2Z ak⇤k we denote by A
+

and A� the positive
and negative parts respectively, i.e. A

+

=
P

k>0

ak⇤k, A
+

+ A� = A; we indicate the
commutator of di↵erence operators with [A,B] = AB � BA. Moreover we define the
residue of A by Res A = a

0

.

The Toda chain hierarchy is given by the system of flows

✏
@L

@t2,q
= [A

2,q, L] q > 0 (2.3)

where the operators A
2,q are defined by

A
2,q =

1
(q + 1)!

[Lq+1]
+

. (2.4)

Example 1 Let’s give some explicit examples of Lax operators and associated flows.
The first example is simply

A
2,0 = ⇤ + u (2.5)

that gives, by (2.3), the t2,0-equations

✏ut2,0 = ((⇤� 1)ev) (2.6)
✏vt2,0 = ((1� ⇤�1)u); (2.7)

these are just the usual Toda chain equations, written in the continuos formalism.

The following example is given by

A
2,1 =

1
2
(⇤2 + ((⇤u) + u)⇤ + u2 + (⇤ev) + ev), (2.8)

and the t2,1-equations are

✏ut2,1 =
1
2
(((⇤u) + u)(⇤ev)� ((⇤�1u) + u)ev) (2.9)

✏vt2,1 =
1
2
((⇤ev)� (⇤�1ev) + u2 � (⇤�1u2)). (2.10)

13



Remark 2 We will use the following notation: whenever the shift operator ⇤ appears
inside a parenthesis, like in (⇤f), it is supposed to act only on the function f inside
the parenthesis; in the other cases it must be considered as an operator that acts on
everything on the right. More explicitly (⇤f) represents the function f(x+ ✏), while ⇤f
represents the operator (⇤f)⇤.

It is well-known that the hierarchy under consideration admits a bihamiltonian
formulation. This essentially means that the Lax flows defined above can be written as
Hamilton equations with respect to two compatible Poisson structures. We summarize
these facts in the following

Theorem 3 The flows t2,q defined above can be expressed in bihamiltonian form

vt2,q = {v, h̄
2,q}1

=
1

q + 1
{v, h̄

2,q�1

}
2

, (2.11)

ut2,q = {u, h̄
2,q}1

=
1

q + 1
{u, h̄

2,q�1

}
2

. (2.12)

The first Poisson brackets are given by

{u(x), u(y)}
1

= {v(x), v(y)}
1

= 0 (2.13a)

{u(x), v(y)}
1

=
1
✏
(�(x� y + ✏)� �(x� y)) (2.13b)

{v(x), u(y)}
1

=
1
✏
(�(x� y)� �(x� y � ✏)) (2.13c)

and the second Poisson brackets by

{u(x), u(y)}
2

=
1
✏
(ev(x+✏)�(x� y + ✏)� ev(x)�(x� y � ✏)) (2.14a)

{v(x), v(y)}
2

=
1
✏
(�(x� y + ✏)� �(x� y � ✏)) (2.14b)

{u(x), v(y)}
2

=
1
✏
u(x)(�(x� y + ✏)� �(x� y)) (2.14c)

{v(x), u(y)}
2

=
1
✏
(u(x)�(x� y)� u(x� ✏)�(x� y � ✏)). (2.14d)

The Hamiltonian densities are given by

h
2,q =

1
(q + 2)!

ResLq+2 q > �1, (2.15)

from which the Hamiltonians h̄
2,q are obtained by integration: h̄

2,q =
R

h
2,qdx. All

these Hamiltonians are in involution with respect to both Poisson brackets, i.e.

{h̄
2,q, h̄2,p}i = 0 (2.16)

for p, q > 0 and i = 1, 2.
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The proof will be given in the following sections together with the proof of the Hamilto-
nian theorem for the extended flows; however for the usual Toda flows it can be found
e.g. in [35].

Example 4 Some examples of Hamiltonian densities are

h
2,�1

= u (2.17)

h
2,0 =

1
2
((⇤ev) + ev + u2). (2.18)

Consider now the Hamiltonian h̄
2,�1

=
R

u(x)dx. One can easily check that, through
the first Poisson bracket, it gives a trivial flow. Indeed it is a Casimir of the first bracket,
i.e. it commutes with any other functional of the variables u(x) and v(x).

It is a well-known fact that, in the presence of a bihamiltonian structure, one can
construct recursively a sequence of Hamiltonians using the Lenard-Magri recursion
relations given by (2.11) i.e.

(q + 1){·, h̄
2,q}1

= {·, h̄
2,q�1

}
2

. (2.19)

In this case one starts from the Casimir h̄
2,�1

and builds all the Hamiltonians h̄
2,q. In

particular one might expect to perform the same procedure starting from every Casimir
of the first bracket. The first Poisson bracket (2.13) actually admits a second Casimir

Z

v(x)dx; (2.20)

starting from this Hamiltonian one would like to obtain a second set of Hamiltonians in
involution with h̄

2,q and between themselves. However we cannot start from the Casimir
(2.20), since it is a Casimir also for the second bracket (2.14). This phenomenon is called
”resonance” of the bihamiltonian structure (2.13), (2.14).

2.2 Dispersionless limit and extended hierarchy

Here we recall the Lax formulation of the dispersive limit of the Toda chain hierarchy.
We show that in this limit new flows can be defined, using the logarithm of the Lax
function. This is a first hint that analogous flows should exist in the dispersive hierarchy.

The dispersionless limit is obtained by putting ✏ ! 0. It can be easily shown
[45] that the Lax representation is simply obtained by substituing ⇤ with p and the
commutator of operators with the canonical Poisson bracket between functions of the
variables x, p. More precisely the dispersionless flows corresponding to (2.3) are

@L
@t2,q

= {A
2,q,L}, A

2,q =
1

(q + 1)!
(Lq+1)

+

, (2.21)

where the Lax operator L is replaced by a Lax function

L(x, p) = p + u(x) + ev(x)p�1, (2.22)
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and the bracket is
{B, C} = p

@B
@p

@C
@x
� p

@C
@p

@B
@x

(2.23)

for any two functions B and C of x and p. (B)
+

means that only non-negative powers
of p, in the power series expansion of B, are considered.

The dispersionless Hamiltonians h̄disp
2,q and Poisson brackets {, }disp

i are obtained
from their dispersive counterparts (2.15), (2.13)-(2.14) as the leading term in ✏ in the
✏! 0 limit, i.e. for the Poisson brackets

{f, g}i = ✏{f, g}disp
i + O(✏2). (2.24)

One finds that the only non-zero terms of the dispersionless Poisson brackets (we drop
the superscript) are

{u(x), v(y)}
1

= �0(x� y) (2.25a)

{u(x), u(y)}
2

= 2ev(x)�0(x� y) + ev(x)vx(x)�(x� y) (2.25b)
{v(x), v(y)}

2

= 2�0(x� y) (2.25c)
{u(x), v(y)}

2

= u(x)�0(x� y). (2.25d)

In particular the same recursion relation as above (2.19) holds in the dispersionless
case.

Considering the genus zero approximation of the topological CP1 model, in [20] it
was noted that new flows, that we denote with times t1,q, can be added to the usual
dispersionless flows given above; their Lax representation is

@L
@t1,q

= {A
1,q,L}, A

1,q =
2
q!

(Lq(logL� cq))+ (2.26)

where cq =
Pq

k=1

1

k , c
0

= 0. The logarithm of L must be understood in the following
way

logL =
1
2
v +

1
2

log(1 + up�1 + evp�2) +
1
2

log(1 + ue�vp + e�vp2) (2.27)

where the first logarithm on the RHS is seen as an expansion in negative powers of p
while the second one in positive powers of p.

These flows can be expressed in Hamiltonian form by

@

@t1,q
· = {·, h̄disp

1,q }disp
1

(2.28)

where the dispersionless Hamiltonians are given by

hdisp
1,q =

2
(q + 1)!

Resp=0

[Lq+1(logL� cq+1

)
dp

p
]. (2.29)

These Hamiltonians however satisfy a recursion relation that is di↵erent from the pre-
vious one (2.19)

{·, h̄
1,q�1

}
2

= q{·, h̄
1,q}1

+ 2{·, h̄
2,q�1

}
1

. (2.30)
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One can use the standard argument for a Lenard-Magri chain to show that all the
Hamiltonians h̄↵,q are in involution with respect to both brackets. Essentially, applying
twice the recursion relation (2.19) one obtains that

{h̄
2,p, h̄2,q}1

=
p + 3
q + 1

{h̄
2,p+1

, h̄
2,q�1

}
1

; (2.31)

then it is clear that applying this formula multiple times one reaches the Casimir h̄
2,�1

,
hence the Hamiltonians h̄

2,q are in involution with respect to {, }
1

. Using this fact one
obtains an analogous relation

{h̄
2,p, h̄1,q}1

=
q + 1
p + 1

{h̄
2,p�1

, h̄
1,q+1

}
1

(2.32)

from which the involutivity of h̄
1,q and h̄

2,p is proved. Using again this fact and the
recursion relation (2.30) one gets

{h̄
1,p, h̄1,q}1

=
p + 1

q
{h̄

1,p+1

, h̄
1,q�1

}
1

(2.33)

and by repeated application of this formula one obtains that {h̄
1,p, h̄1,q}1

is proportional
to

{h̄
1,0, h̄1,q+p}1

. (2.34)

Here we don’t reach the Casimir h̄
1,�1

; anyway the Hamiltonian h̄
1,0 =

R

u(x)v(x)dx is
the generator of x-translations and hence acts trivially on any integrated quantity. We
conclude that all the dispersionless Hamiltonians h̄↵,p are in involution. An analogous
procedure is used to show involution with respect to the second Poisson brackets.

Thus in the dispersionless case the Toda hierarchy has two perfectly well defined
sequences of flows all commuting between themselves, denoted by the times t↵,q for
q > 0, ↵ = 1, 2. We call this the Extended dispersionless Toda chain hierarchy. The
classical dispersive flows corresponding to the times t2,q defined above reduce, for ✏!
0, to the corresponding flows in the dispersionless hierarchy; on the other hand in
the classical dispersive formulation there is apparently no flow reducing for ✏ ! 0 to
the dispersionless flows corresponding to the times t1,q. However the Lenard-Magri
recursion relation (2.30) for the second set of dispersionless flows starts not from the
Casimir h̄

1,�1

(resonance problem) but from the Hamiltonian h̄
1,0.

This suggests to define a dispersive Hamiltonian h̄
1,0 generating the x-translations

under the full dispersive Poisson brackets and then to define the dispersive counterparts
of the Hamiltonians h̄

1,q using the recursion relation (2.30). This was actually done by
Y. Zhang in [48] by providing the ansatz

h̄
1,0 =

Z

u(x)(1� ⇤�1)�1✏vx(x). (2.35)

This Hamiltonian, containing the inverse of the discrete derivative 1�⇤�1, is non-local
so we expect that in general all the Hamiltonians h̄

1,q will be non-local, too. These
Hamiltonians will be in involution between themselves and with all the usual Toda
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Hamiltonians (2.15) with respect to both brackets (2.13) and (2.14). This can be seen
by exactly the same proof just given above for the dispersionless hamiltonians. We call
this system of commuting flows the Extended Toda chain hierarchy.

While in principle we can construct all the hierarchy of Hamiltonians h̄
1,q by recur-

sion, in practice it is impossible to write down the Hamiltonians beyond the first few
ones. A much better computational tool is given by the Lax representation. We will
show in the following, by defining a logarithm of L, how to obtain the Lax representa-
tion for these flows and an explicit form of the non-local Hamiltonians.

2.3 Logarithm of L

In this section we define the logarithm of the operator L through the use of the dressing
operators. Then we show that if we extend the space of functions to be the space of
power series

P

k>0

fk(x)✏k then log L is a well-defined infinite di↵erence operator having
for coe�cients series in powers of ✏ of di↵erential polynomials in the variables u(x), v(x)
and ev(x).

It is well known [47] that one can write the Lax operator (2.2) as the dressing of
the shift operators ⇤ and ⇤�1

L = P⇤P�1 = Q⇤�1Q�1 (2.36)

where the dressing operators P , Q have the form

P =
X

k>0

pk(x)⇤�k p
0

= 1, (2.37a)

Q =
X

k>0

qk(x)⇤k. (2.37b)

By substituting in the definition (2.36), the functions pk, qk can be found in terms
of u, v. These dressing operators P and Q are defined up to the multiplication from
the right by operators of the form 1 +

P

k>1

ck⇤�k and
P

k>0

ĉk⇤k respectively, with
constant coe�cients.

Since the shift operator can be written as ⇤ = e✏@
x one is led to define two di↵erent

logarithms in the following way

log
+

L := P ✏@P�1 = ✏@ + P ✏P�1

x (2.38a)
log� L := �Q✏@Q�1 = �✏@ �Q✏Q�1

x . (2.38b)

Notice that the ambiguity in the definition of the dressing operators is cancelled in the
definition of these logarithms. They are di↵erential-di↵erence operators of the form

log
+

L = ✏@ + 2
X

k>0

w�k(x)⇤�k (2.39a)

log� L = �✏@ + 2
X

k>0

wk(x)⇤k. (2.39b)
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Since we want to write an expression like (2.29) and we need to make sense of the
(·)

+

part, we would like to have a purely di↵erence operator for the logarithm, that we
define by

log L =
1
2

log
+

L +
1
2

log� L = � ✏
2
(PxP�1 �QxQ�1); (2.40)

in this definition the derivative drops out and we get a di↵erence operator of the form

log L =
X

k2Z
wk(x)⇤k. (2.41)

Now we would like to find explicit expressions of the coe�cients wk in terms of the
basic variables u(x), v(x).

We will need in particular to invert the discrete derivative operator ⇤ � 1 that
appears in the recursive definition of the coe�cients wk; however there is no way to
find explicit formulas for such inversion if we work on the space of functions f(x). We
can consider instead functions that are power series in ✏, i.e. of the form

f(x, ✏) =
X

k>0

fk(x)✏k, (2.42)

and impose that the shift operator acts on these functions as the exponential of the
x-derivative

⇤f = e✏ d

dx f =
X

k>0

✏k

k!
(

d

dx
)kf ; (2.43)

then we have an explicit inversion formula in terms of the Bernoulli numbers Bk

(⇤m � 1)�1✏
d

dx
f =

1
m

X

k>0

Bk

k!
(m✏

d

dx
)kf ; (2.44)

the Bernoulli numbers are defined by

x

ex � 1
=
X

k>0

Bk

k!
xk. (2.45)

In (2.44) the operator ⇤m � 1 acts on the derivative ✏ d
dxf since Im(⇤m � 1) = Im✏ d

dx .
Indeed it is easy to check that Ker(⇤� 1) = C[[✏]] and Im(⇤� 1) = Im✏ d

dx ; these give
also the kernel and the image of ⇤m � 1, since ⇤m � 1 = (⇤� 1)(⇤m�1 + · · ·+ 1) and
⇤m�1 + · · ·+ 1 is an automorphism of the space of functions of the form (2.42).

Now consider the case where the coe�cients fk are di↵erential polynomials

Definition 5 We denote by A the algebra of di↵erential polynomials in u, v, ev and
e�v with di↵erential d

dx ; Â := A[[✏]] is the di↵erential algebra of formal power series in
✏ with coe�cients in A.

Remark 6 In the approach of some authors (e.g. [7], [35] and [28]), these objects are
given a purely algebric definition, in the attempt to give a rigorous treatment without
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specifying any boundary condition for the space of functions. E.g. the algebra A can
be seen as the quotient of the polynomial algebra in the symbols u(m), v(m), ev and
e�v for m > 0, plus the constants, by the ideal generated by eve�v � 1; it becomes a
di↵erential algebra if we define the action of the di↵erential d

dx on the generators by
d
dxu(m) = u(m+1), d

dxv(m) = v(m+1) and d
dxev = ev d

dxv.

Now we can state the important

Theorem 7 The coe�cients wk that appear in the definition of the operators log
+

L,
log� L and log L are uniquely determined elements of Â.

Proof By dressing with the operator P the relation [✏@, ⇤m] = 0 we clearly have
[log

+

L,Lm] = 0; spelling out this relation and taking the residue we obtain

((⇤m � 1)w�m) =
1
2
✏

d

dx
p
0

(m) +
m�1

X

l=1

[(1� ⇤l)(w�l⇤�lpl(m))] (2.46)

with Lm =
Pm

k=�1 pk(m)⇤k and pm(m) = 1. Since the RHS is in the image of ⇤m�1,
it’s clear that we can invert such operator and obtain wm for m < 0 in terms of wk,
m < k < 0; hence wm 2 Â. A priori each wm is determined up to an element of
Ker(⇤m � 1) = C[[✏]] i.e. of the form

P

k>0

ck✏k. On the other hand the definition
in terms of the dressing operator shows that these constants are zero, hence wm for
m 6 �1 are uniquely determined; indeed from (2.38a) and (2.39a) we get

w�n = �1
2

n
X

k=1

✏(
d

dx
pk)(⇤�kp⇤n�k) (2.47)

where P�1 =
P

k>0

p⇤k⇤�k. If we put u = 0 = ev in (2.36) we obtain (⇤ � 1)pk = 0
hence pk 2 C[[✏]]; this implies that ✏ d

dxpk = 0 hence, by the previous formula, the
constant in w�n is zero.

Now we have to repeat the same arguments for the coe�cients wm for m > 0; we
define

Q̃ := q�1

0

Q = 1 +
q
1

q
0

⇤ + . . . (2.48)

and
L̃ := q�1

0

Lq
0

. (2.49)

Using the fact that, from (2.36), we have

q�1

0

(⇤�1q
0

) = e�v (2.50)

then, it follows
L̃ = ⇤�1 + u + (⇤ev)⇤. (2.51)

Moreover we have that
L̃ = Q̃⇤�1Q̃�1 (2.52)
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and
log� L = �✏@ + ✏(

d

dx
q
0

)q�1

0

+ ✏q
0

(
d

dx
Q̃)Q̃�1q�1

0

. (2.53)

Hence w
0

= ✏
2

( d
dxq

0

)q�1

0

= ✏
2

(1� ⇤�1)�1(ev)x from (2.50) and, defining

✏(
d

dx
Q̃)Q̃�1 = 2

X

k>0

w̃k⇤k, (2.54)

we can find wk in terms of w̃k

wk = w̃kq0

(⇤kq�1

0

). (2.55)

Since it easily follows from (2.50) that

q
0

⇤kq�1

0

=
k
Y

j=1

⇤je�v 2 Â (2.56)

then we just need to show that w̃k 2 Â. This is easily done as before by dressing with
Q̃ the relation [�✏@, ⇤�m] = 0. ⇤

Example 8 The first few examples of coe�cients of log L are

w�1

=
1
2
((⇤� 1)�1✏ux) (2.57)

w
0

=
1
2
(⇤(⇤� 1)�1✏vx) (2.58)

w
1

=
1
2
(⇤e�v(⇤� 1)�1✏ux). (2.59)

Observe that also the coe�cients pk(x), qk(x) of the dressing operators are in general
non-local functionals of the variables u(x), v(x); however a result similar to Theorem 7
does not hold, i.e. it is not possible to express them as power series in ✏ of di↵erential
polynomials in A.

2.4 Lax representation for the non-local flows

Using the logarithm of L defined in the previous section we now define the additional
flows by giving their Lax representation. We essentially follow the Lax form of the
dispersionless flows t1,q.

Definition 9 The flows defined by the following Lax pair formalism

✏
@L

@t1,q
= [A

1,q, L] q > 0 (2.60)

with
A

1,q =
2
q!

[Lq(log L� cq)]+ (2.61)

where cq =
Pq

k=1

1

k , c
0

= 0 define, together with the usual flows (2.3), the Extended
Toda chain hierarchy.
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Remark 10 Notice that the di↵erence Lax operators A
1,q have in general an infinite

number of terms; alternatively we can use the operator

Ã
1,q =

2
q!

[Lq(log L� cq)]+ �
1
q!

[Lq(log� L� cq)] (2.62)

which gives the same flows, since it di↵ers by a part that commutes with L, but contains
only a finite number of terms. However it is a di↵erential–di↵erence operator as one
can see easily by writing it in the form

Ã
1,q =

1
q!

Lq✏@ +
1
q!

[(Lq(2
X

k<0

wk⇤k � cq))+ � (Lq(2
X

k>0

wk⇤k � cq))�]. (2.63)

Example 11 The first example of Lax operator is

Ã
1,0 = ✏@ (2.64)

and the associated equations of motion are simply given by x-translation, i.e. Lt1,0 =
Lx.

The following example is

Ã
1,1 = ⇤(✏@ � 1) + ⇤(⇤� 1)�1✏u1

x + u1(✏@ � 1)

+ eu2
(✏@ + 1� (⇤� 1)�1✏u2

x)⇤�1 (2.65)

that through (2.60) gives the following non-local equations

✏ut1,1 = (⇤� 1)(�ev(⇤�1 � 1)�1✏vx)� 2(⇤� 1)ev (2.66a)

+
✏

2
(u)2x + ✏(ev)x (2.66b)

✏vt1,1 = ((⇤�1 � 1)�1✏vx)(⇤�1 � 1)u + ✏vx(⇤�1u) (2.66c)

+ ⇤�1✏ux + ✏ux + 2(⇤�1 � 1)u. (2.66d)

2.5 Hamiltonian formulation

Here we prove the bihamiltonian theorem for all the flows of the Extended Toda chain
hierarchy. This in particular shows that they coincide with the flows introduced by
Zhang in [48] using bihamiltonian recursion relation starting from (2.35).

Theorem 12 The flows defined above can be expressed in Hamiltonian form with re-
spect to the first Poisson bracket

ut↵,q = {u, h̄↵,q}1

, vt↵,q = {v, h̄↵,q}1

(2.67)

with ↵ = 1, 2 and q > 0. The recursion relation is given by

{·, h̄↵,q�1

}
2

= (q + µ↵ +
1
2
){·, h̄↵,q}1

+ R�
↵{·, h̄�,q�1

}
1

(2.68)
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where µ
1

= �µ
2

= �1

2

, R�
� = 2��

2

��,1. The Poisson brackets were define previously
by (2.13) and (2.14). The Hamiltonian densities are in involution with respect to both
brackets and are given by

h
2,q =

1
q + 2!

ResLq+2, h
1,q =

2
q + 1!

Res[Lq+1(log L� cq+1

)] (2.69)

and h̄↵,q =
R

h↵,qdx.

Example 13 Some examples of Hamiltonian densities are

h
1,�1

= ⇤(⇤� 1)�1✏vx (2.70a)
h

1,0 = (⇤ + 1)(⇤� 1)�1✏ux � 2u + u⇤(⇤� 1)�1✏vx; (2.70b)

notice that, up to total derivatives, h
1,�1

⇠ v (the second Casimir for the first Poisson
bracket), while

h
1,0 ⇠ u⇤(⇤� 1)�1✏vx (2.71)

is the Hamiltonian (2.35) corresponding to x-translations. Hence the times defined
here in the Lax formalism correspond to those defined by Zhang in [48] by the recursion
relation (2.68) starting from (2.71).

Remark 14 In the following chapter we will see that these Poisson brackets have an
algebraic origin: they are respectively the Poisson-Lie (or Kirillov-Konstant) brackets
on the dual of a Lie algebra and the Sklyanin brackets (naturally defined on a Lie group).
Here however we prefer to introduce them by explicit formulas.

Proof The fact that the Poisson brackets (2.13),(2.14) form a compatible pair i.e. that
they give a bihamiltonian structure is well-known and can be found e.g. in [35].

To prove (2.67) we expand the Lax operators A�,q defined in (2.4) and (2.61) in the
form

A�,q =
X

k>0

⇤ka�,q,k � = 1, 2 q > 0. (2.72)

Since A�,q = (B�,q)+ for operators B�,q that commute with L, it follows that, since
[(B�,q)+, L] = �[(B�,q)�, L], the only nonzero terms in [A�,q, L] are the those with ⇤0

and ⇤�1; hence the Lax equations are well-defined.

Expliciting the Lax equations (2.3) and (2.60) we obtain

✏ut�,q

= (⇤eva�,q,1)� eva�,q,1 (2.73a)

✏vt�,q

= a�,q,0 � (⇤�1a�,q,0). (2.73b)

Hence formulas (2.67) are proved if we show that

�h̄�,q

�u
= a�,q,0

�h̄�,q

�v
= a�,q,1e

v. (2.74)
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Consider the space of Lax operators of the form (2.2); it is parametrized by two
functions u(x) and v(x). The di↵erential of L is

dL = du(x) + dv(x)ev⇤�1 (2.75)

and du(x), dv(x) are the basic di↵erentials of the coordinates on such space. For a
functional

h̄�,q =
Z

h�,qdx (2.76)

the di↵erential will be obtained by functional derivation

dh̄�,q =
Z

dx



�h̄�,q

�u(x)
du(x) +

�h̄�,q

�v(x)
dv(x)

�

. (2.77)

Let’s consider the case � = 2. Using the fact that for any di↵erence operator
A =

P

k Ak⇤k it is easy to check that
Z

Res[A, dL]dx = 0, (2.78)

we have that

dh̄
2,q =

Z

dx
1

(q + 1)!
Res(Lq+1dL) (2.79a)

=
Z

dx
⇣

a
2,q,0(x)du(x) + a

2,q,1(x)ev(x)dv(x)
⌘

(2.79b)

and since du(x) and dv(x) are independent, comparing with (2.77) we obtain the equa-
tions (2.74) in the � = 2 case.

For � = 1 we start by showing that
Z

dx Res(Lpd log L) =
Z

dx Res(Lp�1dL); (2.80)

it is su�cient to show this for log± L. Using the formula

ep log± L = Lp (2.81)

we have

pRes(Lp�1dL) ⇠ Res dLp (2.82a)

= Res dep log± L (2.82b)

⇠ Res(
1
X

n=1

1
(n� 1)!

(p log± L)n�1p d log± L) (2.82c)

= pRes(ep log± Ld log± L) (2.82d)
= pRes(Lpd log± L) (2.82e)

where by ⇠ we mean that we have equality up to total derivatives that vanish under
integration in x.
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Now

dh̄
1,q =

Z

dx
2

(q + 1)!
Res(dLq+1(log L� cq+1

)) (2.83a)

+
Z

dx
2

(q + 1)!
Res(Lq+1d log L)dx (2.83b)

=
Z

dx
2
q!

Res(Ld(log L� cq)dL) (2.83c)

=
Z

dx
⇣

a
2,q,0(x)du(x) + a

2,q,1(x)ev(x)dv(x)
⌘

(2.83d)

hence we obtain equations (2.74) in the � = 1 case.

We have thus completed the proof for the Hamiltonian representation (2.67) using
the first bracket.

The recursion relations (2.68) follow from the identities

(q + 1)
1

(q + 1)!
Lq+1 = L

1
q!

Lq =
1
q!

LqL (2.84a)

q
2
q!

Lq(log L� cq) = L
2

(q � 1)!
Lq�1(log L� cq�1

)� 2
1
q!

Lq (2.84b)

=
2

(q � 1)!
Lq�1(log L� cq�1

)L� 2
1
q!

Lq; (2.84c)

in particular one expands both sides using (2.72) and expresses a↵,q,k in terms of
a↵,q�1,k. Substituting such expressions in (2.73) one finds the recursion relation (2.68).
The involutiveness of the Hamiltonians has been already shown, after (2.35), using the
standard recursion relation argument. ⇤

2.6 The tau structure

In this section we show that the Hamiltonian densities defined above are normalized
in such a way that the so-called tau symmetry holds; from this property we derive the
existence of a tau function for the Extended Toda hierarchy. Moreover we express the
Hamiltonian densities in terms of derivatives of the tau function.

First we introduce a gradation on the algebra Â and we show that Hamiltonians
and the vector fields of the extended Toda hierarchy are homogeneous elements. Let’s
define

deg @mu = 1�m deg @mv = �m deg ev = 2 deg ✏ = 1 (2.85)

where @ = d
dx . Then from the definition of the extended Toda hierarchy and of the

densities of the Hamiltonians it is easy to check that

deg
@u↵

@t�,q
= q + µ� � µ↵ deg h�,q = q +

3
2

+ µ� (2.86)

25



where for simplicity we have introduced the notation u1 := u and u2 := v and the
constant µ↵ is defined by µ

2

= �µ
1

= 1

2

. We denote by Ã the subring of Â that
consists of homogeneous elements of the form

f =
X

k>0

fk✏
k (2.87)

where fk are homogeneous polynomials of u, e±v, @mu, @mv for m > 1 and deg fk =
deg f � k. Then we have

@u↵

@t�,q
2 Ã h�,q 2 Ã. (2.88)

Now we prove the following simple

Lemma 15 The following formula holds

@h↵,p�1

@t�,q
=

(

2

p!

Res[A�,q, Lp(log L� cp)], ↵ = 1;
1

(p+1)!

Res[A�,q, Lp+1], ↵ = 2.
(2.89)

Proof The only non trivial thing is to show that

@ log L

@t�,q
= [A�,q, log L]. (2.90)

It is su�cient to prove this formula for log± L; from [log
+

L,Lm] = 0 we have

[
@ log

+

L

@t�,q
� [A�,q, log

+

L], Lm] = 0 (2.91)

where we have used the Jacobi identity and (2.3)-(2.60). From the fact that @ log+ L

@t�,q

�
[A�,q, log

+

L] is homogeneous and has the form
P

k6�1

gk⇤k we conclude from the last
equality that it is equal to zero. Similarly the same procedure holds for log� L, hence
we conclude. ⇤

Now we can define the coe�cients ⌦↵,p;�,q

Definition 16 The functions ⌦↵,p;�,q are defined by

1
✏
(⇤� 1)⌦↵,p;�,q =

@h↵,p�1

@t�,q
(2.92)

and by the homogeneity condition

⌦↵,p;�,q 2 Ã deg ⌦↵,p;�,q = p + q + µ↵ + µ� + 1. (2.93)

The following Theorem shows that the coe�cients ⌦↵,p;�,q are symmetric with re-
spect to the pairs of indices (↵, p) and (�, q)
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Theorem 17 The Hamiltonians densities h↵,q give a tau–structure compatible with
spatial translations for the Poisson pencil (2.13)-(2.14), i.e. the following identities
hold

{h↵,p�1

, h̄�,q}1

= {h�,q�1

, h̄↵,p}1

↵,� = 1, 2 p, q > 0 (2.94)

{·, h̄
1,0}1

=
@

@x
(2.95)

Proof Begin from the case ↵ = � = 2; by Lemma 15

@h
2,p�1

@t2,q
= Res[

1
(q + 1)!

(Lq+1)
+

,
1

(p + 1)!
Lp+1]; (2.96)

then simply use the fact that given two commuting di↵erence operators A, B it follows
that

Res[A
+

, B] = Res[B
+

, A]. (2.97)

The other cases follow in a similar fashion. ⇤
This Theorem and definition (2.92) imply that @⌦

↵,p;�,q

@t�,k

is symmetric with respect to
the three pairs of indices (↵, p), (�, q) and (�, k). This property justifies the following
definition of the tau function for the extended Toda hierarchy

Definition 18 For any solution of the extended Toda hierarchy there exists a function
⌧ such that

⌦↵,p;�,q = ✏2
@2 log ⌧
@t↵,p@t�,q

(2.98)

holds true for any ↵,� = 1, 2 and p, q > 0.

Since the first flow @
@t1,0 of the extended Toda hierarchy coincides with the transla-

tion in x, i.e. @·
@t1,0 = @·

@x , we can moreover require that the tau function satisfies

@ log ⌧
@t1,0

=
@ log ⌧
@x

. (2.99)

Corollary 19 The densities of the Hamiltonians of the extended Toda hierarchy are
expressed in terms of the tau function in the following form

h↵,p = ✏(⇤� 1)
@ log ⌧
@t↵,p+1

(2.100)

for ↵,� = 1, 2 and p, q > �1.

Proof From the definition of ⌦↵,p;1,0 we get

h↵,p�1

=
X

k>1

✏k�1

k!
@k�1⌦↵,p;1,0 =

X

k>1

✏k+1

k!
@k�1

@2 log ⌧
@t↵,p@t1,0

= ✏(⇤� 1)
@ log ⌧
@t↵,p

, (2.101)

where we have used (2.99). ⇤
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Remark 20 From the Corollary it follows that the variables u, v can be expressed in
terms of the tau function by

v = ⇤�1(⇤� 1)2 log ⌧ (2.102a)

u = ✏(⇤� 1)
@ log ⌧
@t2,0

; (2.102b)

these were obtained by putting p = �1 in (2.100) and ↵ = 1, 2 respectively.

2.7 Bilinear relations for the wave operators

All the equations of the extended Toda hierarchy can be encoded in a single bilinear
expression for the wave operators (plus a constraint), in analogy with the analogous
formula for the two-dimensional Toda hierarchy obtained in [47].

The equations of the extended Toda hierarchy can be obtained as a compatibility
condition of the linear system

LP̂ = P̂⇤ LQ̂ = Q̂⇤�1 (2.103)

✏
@

@t1,q
P̂ = Ã

1,qP̂ ✏
@

@t1,q
Q̂ = Ã

1,qQ̂ (2.104)

✏
@

@t2,q
P̂ =

1
q + 1!

(Lq+1)
+

P̂ ✏
@

@t2,q
Q̂ =

1
q + 1!

(Lq+1)
+

Q̂ (2.105)

for q = 0, 1, 2, . . . and 1

Ã
1,q = [

2
q!

(Lq(log L� cq))+ �
1
q!

Lq(log� L� cq)] (2.106)

= [� 2
q!

(Lq(log L� cq))� +
1
q!

Lq(log
+

L� cq)]; (2.107)

here P̂ , Q̂ are di↵erential–di↵erence operators i.e. of the form
X

k2Z

X

l>0

ak,l⇤k(✏@)l. (2.108)

The solutions have the explicit expression given by the

Theorem 21 If L is a solution of the extended Toda hierarchy then exist di↵erential–
di↵erence operators P̂ , Q̂, solutions of the previous equations, of the following form

P̂ = P exp
1
X

q=0

1
✏
[

1
q + 1!

t2,q⇤q+1 +
1
q!

t1,q⇤q(✏@ � cq)] (2.109)

1A1,q

,

ˆA1,q

and

˜A1,q

are all valid Lax operators for the same flow;

˜A1,q

anyway has a finite number

of terms.
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P =
1
X

k=0

pk⇤�k p
0

= 1 (2.110)

Q̂ = Q exp
1
X

q=0

1
✏

1
q!

t1,q⇤�q(✏@ + cq) (2.111)

Q =
1
X

k=0

qk⇤k (2.112)

These solutions are called wave operators. They are determined up to

P̂ 7! P̂
X

k,l>0

ck,l⇤�k(✏@)l (2.113)

Q̂ 7! Q̂
X

k,l>0

c̃k,l⇤k(✏@)l (2.114)

for constants coe�cients ck, c̃k.

Proof The proof is based on the following Lemmas

Lemma 22 (ZS representation) The extended Toda hierarchy is equivalent to

[@t↵,q �A↵,q, @t�,p

�A�,p] = 0 (2.115)

for ↵,� = 1, 2 and p, q > 0. It is also equivalent to

[@t↵,q � Â↵,q, @t�,p

� Â�,p] = 0 (2.116)

where
Â

2,q = � 1
q + 1!

(Lq+1)� (2.117)

Â
1,q = � 2

q!
(Lq(log L� cq))� (2.118)

Proof The proof is essentially the same as in [47]; one must be careful with commutators
involving more than one log L. ⇤

Lemma 23 If L is a solution of the extended Toda hierarchy then exist P , Q of the
form (2.110),(2.112) satisfying

L = P⇤P�1 = Q⇤�1Q�1 (2.119)

✏
@

@t1,q
P = � 2

q!
(Lq(log L� cq))�P ✏

@

@t1,q
Q =

2
q!

(Lq(log L� cq))+Q (2.120)

✏
@

@t2,q
P = � 1

q + 1!
(Lq+1)�P ✏

@

@t2,q
Q =

1
q + 1!

(Lq+1)
+

Q (2.121)
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Proof This proof is essentially based on the fact that the compatibility conditions for
these equations are given by the ZS equations (2.115)-(2.116). A solution of (2.119)
can be easily shown to exist for t = 0, and it can be extended for all times t by solving
the Cauchy problem. The fact that (2.119) continues to hold for all t simply follows as
in [47]. ⇤

One can now take P , Q as in the previous lemma and show, by direct substitution,
that P̂ ,Q̂ satisfy equations (2.104)-(2.105); the theorem 21 is proved. ⇤

The wave operators of the extended Toda hierarchy can be characterized by a single
bilinear relation plus a constraint. If P̂ , Q̂ are wave operators (i.e. they solve the linear
equations (2.103)-(2.105)) then it follows that

✏@t↵,q P̂ · P̂�1 = ✏@t↵,qQ̂ · Q̂�1 (2.122)

for ↵ = 1, 2, q > 0; then by induction one can show that this holds for a generic
multiindex ↵ = ((↵

1

, q
1

), (↵
2

, q
2

), . . . )

@↵
t P̂ · P̂�1 = @↵

t Q̂ · Q̂�1 (2.123)

where
@↵

t =
@

@t↵1,q1

@

@t↵2,q2
· · · (2.124)

This infinite number of equations can be encapsulated in the single expression

P̂ (t) · P̂�1(t0) = Q̂(t) · Q̂�1(t0); (2.125)

by a Taylor expansion one obtains the expressions above. Notice also that, from (2.103),
we have

P̂⇤P̂�1 = Q̂⇤�1Q̂�1. (2.126)

Viceversa the following theorem holds

Theorem 24 Suppose P̂ , Q̂ are operators of the form (2.109)-(2.112) and suppose
they satisfy the bilinear relation (2.125) and the constraint (2.126); then they are wave
operators. More explicitly, by defining L = P̂⇤P̂�1 = Q̂⇤�1Q̂�1 it follows that L has
the form (2.2), and defining then log L, log

+

L, log� L as usual, we have that P̂ and Q̂
satisfy the equations (2.104)-(2.105).

Proof From (2.126) it follows P⇤P�1 = Q⇤�1Q�1, hence L has the tridiagonal form
(2.2). Consider first the t1,q flow, the t2,q case is done similarly. From the bilinear
relation, by Taylor expansion, we have

✏@t1,q P̂ · P̂�1 = ✏@t1,qQ̂ · Q̂�1 (2.127)

that explicitly gives

✏@t1,qP · P�1 + P
1
q!

⇤q(✏@ � cq)P�1 = ✏@t1,qQ ·Q�1 + Q
1
q!

⇤q(✏@ � cq)Q�1, (2.128)
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hence

✏@t1,qP · P�1 � ✏@t1,qQ ·Q�1 = � 2
q!

Lq(log L� cq). (2.129)

Notice that in the last expression there are only di↵erence operators, hence it makes
sense to take the (·)

+

and (·)� parts. Since ✏@t1,qP · P�1 and ✏@t1,qQ · Q�1 contain
respectively only negative and positive (or zero) powers of ⇤, by taking the (·)

+

and
(·)� part of the last expression we obtain the equations (2.120) for P ,Q and finally the
correct equations for P̂ , Q̂. ⇤

2.8 Bilinear relations for the wave functions

In this section we show that we can encode all the equations of the extended Toda
hierarchy in a single equation for the wave functions that is essentially a rewriting of
the previous bilinear formula for the wave operators.

Define the coe�cients p⇤k, q⇤k by

P�1(x) =
1
X

k=0

⇤�kp⇤k(x + 1) Q�1(x) =
1
X

k=0

⇤kq⇤k(x + 1) (2.130)

and the wavefunctions  ̂, �̂,  ̂⇤, �̂⇤ in the following way

 ̂ =  �
x

✏ exp
1
X

q=0

1
✏
[

1
q + 1!

t2,q�q+1 +
1
q!

t1,q�q(log �� cq)] (2.131)

 ̂⇤ =  ⇤��
x

✏ exp�
1
X

q=0

1
✏
[

1
q + 1!

t2,q�q+1 +
1
q!

t1,q�q(log �� cq)] (2.132)

 =
1
X

k=0

pk�
�k  ⇤ =

1
X

k=0

p⇤k�
�k (2.133)

�̂ = ��
x

✏ exp(
1
X

q=0

1
✏
[
1
q!

t1,q��q(log �+ cq)]) (2.134)

�̂⇤ = �⇤��
x

✏ exp(�
1
X

q=0

1
✏
[
1
q!

t1,q��q(log �+ cq)]) (2.135)

� =
1
X

k=0

qk�
k �⇤ =

1
X

k=0

q⇤k�
k (2.136)
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then the equations of the extended Toda hierarchy are given by
I

[✏ t2,q(x) ⇤(x0)�x�x0 +
1

q + 1!
 (x) ⇤(x0)�q+1�x�x0 ]d� =

I

�t2,q(x)�⇤(x0)�x�x0d�

(2.137)
I

[✏ t1,q(x) ⇤(x0)�x�x0 +
1
q!
 (x)✏ ⇤x0(x

0)�q+x�x0 � 1
q!

cq (x) ⇤(x0)�q+x�x0 ]d� =

=
I

[✏�t1,q(x)�⇤(x0)�x�x0 +
1
q!
�(x)✏�⇤x0(x

0)��q+x�x0 +
1
q!
�(x)�(x0)��q+x�x0cq]d�

(2.138)

and
I

[ (x) ⇤(x0)�q+x�x0 ]d� =
I

[�(x)�⇤(x0)��q+x�x0 ]d�. (2.139)

The proof is obtained simply by expanding this formulas in the di↵erent cases and
comparing with the bilinear relation for the wave operators considered in the previous
section.

2.9 Darboux transformations and soliton solutions

Here we introduce the Darboux transformation for Lax operator (2.2) and we obtain
that the usual solitonic solutions are stable under the non-local Toda flows.

The Darboux transformation for the equation L = � , i.e.

⇤ + u + ev⇤�1 = � (2.140)

is given by

 [1] =  �  
1

⇤�1 
1

⇤�1 (2.141)

v[1] = ⇤�1v + (1� ⇤�1)2 log 
1

(2.142)

u[1] = u + (⇤� 1)
 

1

⇤�1 
1

(2.143)

where  
1

is a solution of (2.140) for � = �
1

; this means that  [1] will satisfy

⇤ [1] + u[1] [1] + ev[1]⇤�1 [1] = � [1]. (2.144)

Moreover if  and  
1

satisfy

✏ t↵,q = A↵,q (2.145)

we assume that the Darboux transformed  [1] satisfies

✏ [1]t↵,q = A↵,q[1] [1] (2.146)

where A↵,q[1] is obtained from A↵,q by substituting u with u[1] and v with v[1]. This
implies that the u[1], v[1] are a new solution of the compatibility condition of the linear
equations (2.144)-(2.146), i.e. a new solution of the extended Toda hierarchy.
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One–soliton solutions are obtained by starting from a constant potential, e.g. u =
0 = v; the first equations for  in this case reduce to

⇤ + ⇤�1 = � (2.147)
✏ t1,1 = (⇤ + ⇤�1)✏@ � (⇤� ⇤�1) (2.148)

while t1,0 is as usual identified with the x-translation. The generic solution of (2.147)-
(2.148) is a linear combination of

 ± = exp(
1
✏
(x + �t1,1) log z± +

1
✏
t1,1(�z± + 1/z±)) (2.149)

with z± roots of z + z�1 = �. We can choose, for example

 
1

= 2 cosh(
1
✏
(x + �

1

t1,1) log z
1

+
1
✏
t1,1(�z

1

+ 1/z
1

)) (2.150)

with z
1

+ z�1

1

= �
1

. The Darboux transformed potentials u[1], v[1] are

u[1] = (⇤� 1)
cosh(1

✏ ((x + �
1

t1,1) log z
1

+ t1,1(�z
1

+ 1/z
1

)))
cosh(1

✏ ((x + �
1

t1,1) log z
1

+ t1,1(�z
1

+ 1/z
1

))� log z
1

)
(2.151)

v[1] = (1� ⇤�1)2 log[2 cosh(
1
✏
(x + �

1

t1,1) log z
1

+
1
✏
t1,1(�z

1

+ 1/z
1

))] (2.152)

These are solutions of the flow @
@t1,1 , that in explicit form is

✏ut1,1 = (⇤� 1)(�ev(⇤�1 � 1)�1✏vx)� 2(⇤� 1)ev (2.153)

+
✏

2
(u)2x + ✏(ev)x (2.154)

✏vt1,1 = ((⇤�1 � 1)�1✏vx)(⇤�1 � 1)u + ✏vx(⇤�1u) (2.155)
+⇤�1✏ux + ✏ux + 2(⇤�1 � 1)u. (2.156)

As a further example we can consider the same solution with explicit t2,0 dependence

u[1] = (⇤� 1)
 

1

⇤�1 
1

(2.157)

v[1] = (1� ⇤�1)2 log 
1

(2.158)

with
 

1

=  (z) +  (z�1) (2.159)

 (z) = exp(
x

✏
log z +

1
✏
t1,1(�z + z�1 + � log z) +

1
✏
t2,0z) (2.160)

i.e. these are also solutions of

✏ut2,0 = (⇤� 1)ev ✏vt2,0 = (1� ⇤�1)u. (2.161)
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The multisoliton solution with explicit dependence on all the times t↵,q is given
by iterating the Darboux transformation; choose N solutions  

1

. . . N of the Lax
equations (2.140)-(2.145) with u = v = 0:

 k = ak (zk) + bk (z�1

k ) (2.162)

with zk + z�1

k = �k and

 (z) = z
x

✏ exp{1
✏

X

q>0

t1,q[� 1
q!

cq((�q)
+

� (�q)�) +
1
q!
�q log z] +

1
✏

X

q>0

t2,q 1
q + 1!

(�q+1)
+

}

(2.163)
where (·)

+

and (·)� denote the part of a polynomial in z, z�1 where zk compares with
k > 0 and k < 0 respectively. The multisoliton solution is then given by the iterated
Darboux transform which can be expressed as

v[N ] = ⇤�Nv + (1� ⇤�1)2 log W ( 
1

. . . N ) (2.164)
u[N ] = ⇤�Nu + (1� ⇤�1)✏@t2,0 log W ( 

1

. . . N ) (2.165)

(in this case u = 0 = v) in terms of the discrete Wronskian

W ( 
1

. . . N ) = det(⇤�j+1 N+1�i)16i,j6N . (2.166)

Remark 25 There are other classes of solutions of the extended hierarchy that deserve
further investigation. First of all consider the similarity solutions. The extended Toda
hierarchy admits the so called Galilean symmetry, i.e. the vector field

@v

@s
= 1 +

1
X

p=1

t↵,p @v

@t↵,p�1

@u

@s
=

1
X

p=1

t↵,p @u

@t↵,p�1

(2.167)

commutes with all the flows of the hierarchy, @
@s

@v
@t↵,p

= @
@t↵,p

@v
@s . This is a general

feature of the bihamiltonian integrable hierarchies considered by Dubrovin and Zhang
[19]. The solutions of the hierarchy that are invariant under this symmetry satisfy the
so-called string equation

1
X

p=0

t↵,p �h̄↵,p�1

�u�
= 0 (2.168)

and are called similarity solutions. We consider an example putting t↵,p = 0 for p > 1,
so we obtain the system

t2,0 + t2,1u + t1,1(1� ⇤�1)�1✏vx = 0 (2.169)
t2,1ev + t1,0 + t1,1(1� ⇤)�1(�✏)ux = 0, (2.170)

that can be rewritten as a single equation for the variable v

t2,1ev + t1,0 +
(t1,1)2

t2,1
(1� ⇤)�1(1� ⇤�1)�1✏2vxx = 0 (2.171)

or equivalently as a di↵erential–di↵erence equation

(t2,1)2(1� ⇤�1)(1� ⇤)ev + (t1,1)2✏2vxx = 0. (2.172)
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The nonlinear equations obtained from similarity reductions of integrable hierarchies
usually have nice analytic properties since they can be also seen as isomonodromic de-
formation equations [31]. In the present case we obtain di↵erential–di↵erence Painlevé
type equations.

Another important class of solutions is given by the algebro-geometric quasi peri-
odic solutions. They correspond to stationary reductions of the hierarchy, that in the
extended case are given again by ordinary di↵erential-di↵erence equations. It should be
possible to obtain such solutions through the method of the Baker-Akhiezer function on
a Riemann surface as was already done for the standard Toda chain. The work in this
direction is in progress.
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Chapter 3

Extended bigraded Toda
hierarchy

In this chapter we introduce the bigraded Toda hierarchy, a generalization of the Toda
chain hierarchy where the Lax operator is a di↵erence operator of the form

L = ⇤N + uN�1

⇤N�1 + · · ·+ u�M⇤�M (3.1)

for two integers N,M > 0; thus the Toda chain corresponds to N = M = 1.

First we define two fractional powers and the logarithm of the operator L and use
them to define the flows of the hierarchy in the Lax formulation.

Then we derive the bihamiltonian structure for this hierarchy, using the R-matrix
approach. We review the main theorems from the literature and we apply the general
construction on suitable algebras of di↵erence operators, thus obtaining two Poisson
structures on these algebras; finally we obtain the Poisson brackets on operators of the
form (3.1) by a Dirac reduction on an a�ne subspace.

By direct calculation we derive the connection between the Hamiltonian and the
Lax formulations (through the first Poisson bracket).

3.1 Extended bigraded Toda hierarchy in the Lax formu-
lation

Here we define the flows of the bigraded Toda hierarchy in the Lax formulation. To
this purpose we define the fractional powers and the logarithm of L and we show that
they are uniquely expressed in terms of powers series in ✏ of di↵erential polynomials in
the coe�cients of L.

Let’s first define the fractional powers L
1
N and L

1
M of the Lax operator (3.1); these
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are two operators of the form

L
1
N = ⇤ +

X

k60

ak⇤k (3.2a)

L
1
M =

X

k>�1

bk⇤k (3.2b)

defined by the relations
(L

1
N )N = L (L

1
M )M = L. (3.3)

We stress that we consider L
1
N and L

1
M as two di↵erent operators, even if N = M .

As in the Toda chain case the operator (3.1) can be written as the dressed shift
operators

L = P⇤NP�1 = Q⇤�MQ�1 (3.4)

where the dressing operators P , Q have the form

P =
X

k>0

pk(x)⇤�k p
0

= 1, (3.5a)

Q =
X

k>0

qk(x)⇤k. (3.5b)

The logarithms of the operator L are then defined by

log
+

L = PN✏@P�1 = N✏@ + N✏PP�1

x (3.6a)
log� L = �QM✏@Q�1 = �M✏@ �M✏QQ�1

x . (3.6b)

These are di↵erential-di↵erence operators of the form

log
+

L = N✏@ + 2N
X

k>0

w�k(x)⇤�k (3.7a)

log� L = �M✏@ + 2M
X

k>0

wk(x)⇤k. (3.7b)

As before we define

log L =
1

2N
log

+

L +
1

2M
log� L =

X

k2Z
wk⇤k (3.8)

that is a purely di↵erence operator since the derivatives cancel.

Of course an equivalent definition of the operators L
1
N and L

1
M can be given in

terms of the dressing operators

L
1
N = P⇤P�1 L

1
M = Q⇤�1Q�1. (3.9)

As in the Toda chain case we would like to find explicit expressions for log L, L
1
N

and L
1
M in terms of the coe�cients of L. Let’s give the definition of the proper algebra

of di↵erential polynomials in this case
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Definition 26 We denote by A the algebra of di↵erential polynomials in uN�1

, . . . , u�M+1

,
(u�M )

1
M , (u�M )�

1
M and log u�M ; Â := A[[✏]] is the di↵erential algebra of formal power

series in ✏ with coe�cients in A.

First we prove that

Theorem 27 The coe�cients of the operators L
1
N and L

1
M are uniquely determined

elements of Â.

Proof Spelling out the coe�cient of ⇤N�m�1 of the relation (L
1
N )N = L that defines

L
1
N we have for m > 0

(⇤N�1 + · · ·+ 1)a�m = fm(a
0

, . . . , a�m+1

) + uN�m�1

(3.10)

where fm is a di↵erence polynomial in the variables a
0

, . . . , a�m+1

. Since ⇤N�1+ · · ·+1
is invertible on Â we find that am 2 Â for m 6 0.

Now consider the operator L
1
M . Define the operator L = q�1

0

Lq
0

where q
0

is the
leading term in the expansion (3.5b) of the dressing operator Q. The coe�cients ũk of
L̃ are clearly elements of Â since they are expressed as

ũk = uk(⇤kq
0

)q�1

0

(3.11)

and
⇤kq

0

q
0

= e(1�⇤

�M

)

�1
(⇤

k�1) log u�M . (3.12)

Indeed from the definition (3.4) of Q we have

u�M = q
0

(⇤�Mq�1

0

) (3.13)

from which (3.12) follows. Moreover, since (1�⇤�M )�1(⇤k�1) log u�M = g
0

+g
1

✏+. . .
where gk are di↵erential polynomials and in particular g

0

= k
M log u�M , we have that

(3.12) equals

(u�M )
k

M (
X

l>0

1
l!

(g
1

✏+ g
2

✏2 + . . . )l (3.14)

hence ⇤

kq0
q0

is in Â.

For the same reason the coe�cients bk of L
1
M are elements of Â if we can show

that the coe�cients of L̃
1
M can be expressed as ✏-series of di↵erential polynomials in

ũk. Since (L̃
1
M )M = L̃, this is shown in the same way as we did before for the ak

coe�cients. The theorem is proved. ⇤
Finally we prove the generalization of the Theorem 7

Theorem 28 The coe�cients of log L are uniquely determined elements of Â.
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Proof For the coe�cients wk with k 6 �1 we start by dressing with P the relation
[✏@, ⇤m] = 0. The proof simply follows the steps of that of Theorem 7 but in this case
Lm is substituted with L

m

N ; however, since we know from the previous theorem that
the coe�cients of L

1
M are in Â, the proof remains unchanged.

For the coe�cients wk with k > 0 we introduce the operators Q̃ and L̃ as in (2.48)
and (2.49); then the coe�cients ũk are related to uk by (3.11). One then follows the
same steps as in Theorem 7. ⇤

Example 29 Some examples of coe�cients wk are

w�1

=
✏

2
(⇤N � 1)�1(uN�1

)x (3.15a)

w
0

=
✏

2
(1� ⇤�M )�1

(u�M )x

u�M
(3.15b)

w
1

=
✏

2

⇣

e(1�⇤

�M

)

�1
(1�⇤) log u�M

⌘

(1� ⇤�M )�1(u�M+1

)x. (3.15c)

Finally we can define the flows of the extended bigraded Toda hierarchy

Definition 30 The Extended bigraded Toda hierarchy consists of the system of flows
given by the following Lax pair formalism

✏
@L

@t↵,q
= [A↵,q, L] (3.16)

for ↵ = N � 1, . . . ,�M and q > 0. The operators A↵,q are defined by

A↵,q =
�(2� ↵

N )
�(q + 2� ↵

N )
(Lq+1� ↵

N )
+

for ↵ = N � 1, . . . , 0 (3.17a)

A↵,q =
��(2 + ↵

M )
�(q + 2 + ↵

M )
(Lq+1+

↵

M )� for ↵ = 0, . . . ,�M + 1 (3.17b)

A�M,q =
1
q!

[Lq(log L� 1
2
(

1
M

+
1
N

)cq)]+ (3.17c)

The choice of the normalization of the coe�cients of A↵,q comes from the require-
ment of the tau symmetry for the associated Hamiltonians. We are however free to
multiplicate the Gamma functions �(x) in the denominators by a function f such that
f(x + 1) = f(x) without losing the tau symmetry.

Remark 31 Most of the definitions above continue to hold for the case M = 0 i.e. for
a Lax operator of the form

L = ⇤N + uN�1

⇤N�1 + · · ·+ u
0

. (3.18)

However notice that in this case we will have only one dressing operator P

L = P⇤NP�1 (3.19)
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and correspondingly only the fractional power L
1
N defined by (3.3) and only the loga-

rithm log
+

L := PN✏@P�1. The main di↵erence however is that we cannot define a
logarithm given by a di↵erence operator like (3.8) since we cannot eliminate the deriva-
tive; hence we cannot define with such logarithm new flows by their Lax representations.

We can however define the other flows by

✏
@L

@t↵,q
= [(Lq+1� ↵

N )
+

, L]. (3.20)

3.2 Background on R-matrix theory

In this section we introduce the basic facts about R-matrix theory that will be used to
obtain compatible Poisson structures on certain Lie algebras of di↵erence operators.

The classical R-matrix method was introduced by Sklyanin [44] as a by-product of
the quantum inverse-scattering method.

In general a (unitary) R-matrix on a Lie algebra produces a ”compatible” Lie alge-
bra structure on the dual of the Lie algebra; this ”Lie bialgebra” is the natural object
that describes the infinitesimal structure of a Poisson-Lie group (a Lie group with a
Poisson structure such that the multiplication is a Poisson map, see [8]).

The connection with the theory of integrable systems is mainly due to Semenov-
Tian-Shansky that in [42] introduced the modified Yang–Baxter equation, defined linear
and quadratic Poisson brackets on generic associative algebras with an R-matrix and
related these Poisson structures with the Lax formalism.

After reviewing some facts about the unitary case considered by Semenov-Tian-
Shansky we will recall the basic facts of the generalization to the non-unitary case
developed in [40, 36].

3.2.1 R matrix and the modified Yang-Baxter equation

Let G be a Lie algebra. A linear mapping R : G ! G is called a (classical) R-matrix if
the bracket

[X, Y ]R := [R(X), Y ] + [X, R(Y )] for X, Y 2 G (3.21)

is a Lie bracket, i.e. if it satisfies the Jacobi identity.

A su�cient condition for R 2 End(G) to be an R-matrix is that

[R(X), R(Y )]�R([X, Y ]R) = �[X, Y ]; (3.22)

equation (3.22) is called modified Yang–Baxter equation.1

1
More generally the equation (3.22) can be substituted with

[R(X), R(Y )]�R([X, Y ]

R

) = �↵[X, Y ] (3.23)

with ↵ 2 R, that for ↵ = 0 corresponds to the original Yang-Baxter equation; by rescaling R one can

always reduce it to one of the only two relevant cases ↵ = 0 and ↵ = 1.
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The typical example of R-matrix comes from the splitting of the algebra G; indeed if
we can split G into the direct sum of two subalgebras: G = G

+

�G�, then the di↵erence
of the projection operators onto these subalgebras

R = P
+

� P� (3.24)

satisfies the modified Yang-Baxter equation (3.22) and hence gives an R-matrix on G.2

The Lie bracket in this case is

[X, Y ]R = 2[P
+

(X), P
+

(Y )]� 2[P�(X), P�(Y )]. (3.25)

The importance of the R-matrix in the theory of integrable systems lies in the fact
that it can be used to define non-trivial Poisson structures. Let’s recall the origin of
the linear and of the quadratic brackets.

3.2.2 Linear brackets

It is well known that we can always define a Poisson bracket on the dual of a Lie algebra;
such construction is due to Lie. Let G be a Lie algebra and f , g two functions on the
dual G⇤; then the Lie-Poisson bracket { , } : C1(G⇤)⇥C1(G⇤) ! C1(G⇤) is given by

{f, g}(⇠) =< ⇠, [df, dg] > (3.28)

for any ⇠ 2 G⇤; here the di↵erentials df , dg are identified with elements of the algebra
G in the obvious way and <,> denotes the pairing of G with its dual.

Hence, given an R-matrix on G, we can define a linear Poisson bracket on G⇤ asso-
ciated with [, ]R

{f, g}
1

(⇠) =< ⇠, [df, dg]R > . (3.29)

If we define the Poisson tensor P
1

(⇠) : G ! G⇤ by

{f, g}
1

(⇠) =< P
1

(⇠)dg, df > (3.30)

then the Hamiltonian vector field on G⇤ associated to some Hamiltonian H is given by

d⇠

dt
= P

1

(⇠)dH. (3.31)

Among all the possible Hamiltonian functions on G⇤ a particular role is played by
the functions invariant under the coadjoint action of G on G⇤.

2
The splitting of an associative algebra G = G+ � G� gives a class of solutions of the so called

Poincaré-Bertrand formula

R(X)R(Y ) = R(R(X)Y + XR(Y ))�XY (3.26)

which is the analogous of the modified Yang-Baxter for associative algebras. It gives a su�cient

condition for the product

X ⇥
R

Y = R(X)Y + Y R(X) (3.27)

to be associative.
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Recall that the adjoint and coadjoint representations of G

ad :G ! EndG ad⇤ :G ! EndG⇤ (3.32)
X 7! adX X 7! ad⇤X (3.33)

are defined respectively by
adXL = [X, L] (3.34)

and
< ad⇤X⇠, L >= � < ⇠, adXL >=< ⇠, [L,X] > (3.35)

for X, L 2 G and ⇠ 2 G⇤.

A function f 2 C1(G⇤) is ad⇤-invariant if

ad⇤df(⇠)⇠ = 0 8⇠ 2 G⇤ (3.36)

where df(⇠) 2 T ⇤⇠ G⇤ ' G.

The ad⇤-invariant functions on G⇤ coincide (by definition) with the Casimirs of the
bracket {, }.

The main relation with the Lax formalism is given by the following theorem by
Semenov-Tian-Shansky

Theorem 32 ([42]) Let G be a Lie algebra with an R-matrix R : G ! G; then
(i) The ad⇤-invariant functions on G are in involution with respect to { , }

1

.
(ii) The vector field d⇠

dt = P
1

(⇠)dH on G⇤ associated to an invariant Hamiltonian H
can be written

d⇠

dt
= ad⇤R(dH(⇠))⇠ = fad

⇤
dH(⇠)⇠. (3.37)

where fad
⇤

is the coadjoint representation of G with the bracket [, ]R.

If we identify G and G⇤ through a non degenerate invariant inner product (, ) on G
then formula (3.29) defines a Poisson bracket on the G

{f, g}
1

(L) = (L, [df, dg]R) (3.38)

and the Theorem simply says that the Casimirs of the bracket {f, g}(L) = (L, [df, dg])
are in involution with respect to {, }

1

and that the Hamiltonian vector field associated
to one of such Casimirs can be written as

dL

dt
= [RdH, L] (3.39)

i.e. in the Lax pair formalism.
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3.2.3 Quadratic brackets

The quadratic Poisson brackets are naturally defined on a Lie group (the so-called
Sklyanin brackets) rather than on a Lie algebra. However their definition makes sense
also on a generic associative algebra, as observed in [42].

If G is an associative algebra with a symmetric non-degenerate invariant inner prod-
uct (, ) (by which we can identify G with its dual), and R : G ! G is skew-symmetric
and satisfies the modified Yang-Baxter equation (3.22), then the bracket

{f, g}Skl
2

(L) = (L, [df,R(Ldg)]� [dg, R(dfL)]) (3.40)

is a Poisson bracket on G ; moreover it is compatible with the linear bracket (3.29),
seen as a bracket on G, i.e. any linear combination of {, }

1

and {, }
2

is still a Poisson
bracket.

As before the Casimirs of {, } are in involution with {, }
2

and for a Casimir H the
Hamiltonian flow dL

dt = P
2

dH can be written in Lax form

dL

dt
= [L,R(dHL)]. (3.41)

3.2.4 Non-unitary case

In some cases, for example in discrete systems like Toda, the R-matrix turns out to be
not skew-symmetric. However, even in this “non-unitary” case, it is still possibile to
define Poisson brackets on a Lie algebra; these results are due to [40] and [36].

Let G be an associative algebra, with the natural Lie bracket given by the commuta-
tor. Assume on G the existence of a symmetric non-degenerate trace-form Tr : G ! C
with an associated invariant inner product

(L
1

, L
2

) := Tr(L
1

L
2

); (3.42)

using this inner product we identify G and G⇤. Let R : G ! G be a linear map and
define the following three brackets on C1(G)

{f
1

, f
2

}
1

(L) := (L, [df
1

, df
2

]R) = ([L, df
1

], R(df
2

))� ([L, df
2

], R(df
1

)) (3.43a)
{f

1

, f
2

}
2

(L) := ([L, df
1

], R(Ldf
2

+ df
2

L))� ([L, df
2

], R(Ldf
1

+ df
1

L)) (3.43b)
{f

1

, f
2

}
3

(L) := ([L, df
1

], R(Ldf
2

L))� ([L, df
2

], R(Ldf
1

L)). (3.43c)

The first bracket is simply the linear bracket that we have considered above, hence we
already know that it is a Poisson bracket on the algebra G when

The previous results are generalized for the non-unitary case by the following

Proposition 33 ([40, 36]) (1) For any R-matrix R, {, }
1

is a Poisson bracket. (2)
If both R and its skew-symmetric part A = 1

2

(R�R⇤) satisfy the modified Yang-Baxter
equation (3.22) then {, }

2

is a Poisson bracket.
(3) If R solves the modified Yang-Baxter equation (3.22) then {, }

3

is a Poisson bracket.
Moreover the three brackets are compatible.
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The Poisson tensors corresponding to the brackets (3.43) are defined by

{f
1

, f
2

}i(L) =: (df
1

, Pi(L)df
2

) i = 1, 2, 3 (3.44)

and are explicitly given by

P
1

(L)df = �[L,R(df)]�R⇤([L, df ]) (3.45)
P

2

(L)df = �[L,R(Ldf + dfL)]� LR⇤([L, df ])�R⇤([L, df ])L (3.46)
P

3

(L)df = �[L,R(LdfL)]� LR⇤([L, df ])L. (3.47)

As before the Casimir functions of {, } are in involution with respect to these Poisson
brackets and the associated flows admit a simple Lax representation

Proposition 34 The Casimir functions of {, } are in involution with respect to the
three Poisson brackets (3.43). If H is a Casimir the associated Hamilton equations
have the following Lax form

P
1

dH = �[L,R(dH)] (3.48)
P

2

dH = �[L,R(LdH + dHL)] (3.49)
P

3

dH = �[L,R(LdHL)] (3.50)

3.2.5 A lemma on Dirac reduction of Poisson brackets

We will need to reduce the Poisson brackets defined on the whole algebra on a certain
submanifold, following the general Dirac prescription. Since we will always deal with
reductions to a�ne subspaces all we need is summarized in the following

Lemma 35 ([40]) Given two linear spaces U , V with coordinates u, v, let

P (u, v) =
✓

Puu Puv

Pvu Pvv

◆

: U⇤ � V ⇤ ! U � V (3.51)

be a Poisson tensor on U � V . If the component Pvv : V ⇤ ! V is invertible then, for
an arbitrary v 2 V , the map P rid(u; v) : U⇤ ! U given by

P rid(u; v) = Puu(u, v)� Puv(u, v)(Pvv(u, v))�1Pvu(u, v) (3.52)

is a Poisson tensor on the a�ne space v + U 2 U � V .

The condition of invertibility of Pvv can be relaxed by asking that Pvv be invertible
on the image of Pvu : U⇤ ! V . Moreover it is easy to check that if two Poisson tensors
are compatible then their reductions to an a�ne subspace will remain compatible.
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3.3 Bigraded Toda bihamiltonian structure

In this section we introduce the simplest algebras of di↵erence operators and using
the R-matrix constructions of the previous section we define Poisson structures on
such algebras. Moreover by reduction to a suitable a�ne subspace we obtain the
bihamiltonian structure for the bigraded Toda hierarchy.

We will compute the reductions also for the case of L given by a semi-infinite
operator

L = ⇤N + uN�1

⇤N�1 + . . . (3.53)

thus obtaining its bihamiltonian structure; this can however be easily obtained from
the two-dimensional Toda case considered in the next Chapter, by putting ūk = 0.

3.3.1 Algebras of di↵erence operators

We will consider the following linear spaces of (formal) di↵erence operators with coef-
ficients in C1(R) or C1(S1)

A+ =

(

X

k<+1
ak(x)⇤k

)

(3.54)

A� =

(

X

k>�1
ak(x)⇤k

)

. (3.55)

It is convenient to introduce also the spaces

A1 =

(

X

k2Z
ak(x)⇤k

)

and A0 = A+ \A�. (3.56)

The spaces A+, A� and A0 are associative algebras with the usual multiplication
defined by ⇤f(x) = f(x + ✏)⇤; hence they are Lie algebras with Lie bracket given by
the commutator. On the other hand the product is not well defined in A1 due to the
presence of infinite sums; however it is possible to multiply elements of A1 by elements
of A0.

On these spaces we have the natural projections on the positive and negative parts,
defined by

 

X

k2Z
ak(x)⇤k

!

+

=
X

k>0

ak(x)⇤k and X
+

+ X� = X (3.57)

for X any di↵erence operator; we will also use the notations X>0

, X60

with the obvious
meaning.

The residue is defined by

Res X := X
0

where X =
X

k2Z
Xk⇤k; (3.58)
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from translation invariance of the integral
R

fdx =
R

(⇤f)dx it follows that Tr[X, Y ] = 0
where the trace-form of a di↵erence operator is defined by

TrX :=
Z

Res Xdx. (3.59)

The bilinear pairing
(X, Y ) := TrXY (3.60)

gives a non-degenerate symmetric inner product on A+, A� and A0; moreover it gives
a pairing between A0 and A1.

3.3.2 Poisson tensors

The Poisson structures of the Toda lattice are related to the splitting of a di↵erence
operator in its positive and negative parts; moreover, since we need to use the R-matrix
theorems, we need an associative algebra with a non-degenerate inner product. Hence
we may consider the algebra A+ with the bilinear pairing (3.60) and the splitting

A+ = (A+)
+

� (A+)�. (3.61)

The naturally associated linear endomorphism R : A+ ! A+

R(X) = X
+

�X� (3.62)

automatically satisfies the modified Yang-Baxter equation (3.22).

The splitting (3.61) is not isotropic with respect to the natural inner product on
A+; equivalently R is not skew-symmetric i.e. R 6= �R⇤ where

R⇤(X) = X60

�X>0

. (3.63)

However we have that

Lemma 36 The skew-symmetric part A = 1

2

(R�R⇤) of R satisfies the modified Yang-
Baxter equation (3.22).

Proof The skew-symmetric part is given by A(X) = X>0

�X<0

: then check (3.22) by
direct substitution. ⇤

Hence by Proposition 33 we have

Proposition 37 There are three compatible Poisson structures on A+ given by

P
1

(L)df = �2[L, df
+

] + 2[L, df ]>0

= 2[L, df�]� 2[L, df ]60

(3.64a)

P
2

(L)df = �2[L, (Ldf + dfL)
+

] + 2L[L, df ]>0

+ 2[L, df ]>0

L (3.64b)
= 2[L, (Ldf + dfL)�]� 2L[L, df ]60

� 2[L, df ]60

L (3.64c)

P
3

(L)df = 2[L, (LdfL)�]� 2L[L, df ]60

L (3.64d)
= �2[L, (LdfL)

+

] + 2L[L, df ]>0

L. (3.64e)
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Notice that the same considerations can be done for the algebra A� in a completely
analogous way. It will be su�cient for us to consider the algebra A+, since we are
mainly interested in the resulting Poisson structures for the bigraded Toda hierarchy.

3.3.3 Explicit form of Poisson brackets

Here we express the Poisson brackets in the more usual form {un(x), um(y)}, using the
following

Lemma 38 The Poisson bracket (3.44) defined by a Poisson tensor P (L) can be writ-
ten as

{un(x), um(y)}(L) = Pnm[�(x� y)] (3.65)
where Pnm is given by

Pnm[�(x� y)] = (P (L)⇤�m�(x� y))n and P (L)df = (P (L)df)l⇤l. (3.66)

Proof This easily follow from the definitions, if we start with the functional on A+

given by
f(L) = ul(y); (3.67)

it follows
�f

�us(x)
= �sl�(x� y) (3.68)

and
df(L) = ⇤�l�(x� y). (3.69)

Substituting in (3.44) we conclude. ⇤
We emphasize that there is no reduction involved here, we are simply calculating

the explicit form of the brackets in some point L of the algebra A+.

First bracket

The explicit form of the first Poisson bracket calculated in L =
P

k6N uk⇤k is

{un(x), um(y)}
1

(L) = Cn,m

⇥

un+m(x)�(x�y+n✏)�un+m(x�m✏)�(x�y�m✏)
⇤

(3.70)

where n, m 2 Z and the constant Cn,m is given by

Cn,m =

(

�1 n 6 0
1 n > 0

+

(

�1 m 6 0
1 m > 0;

(3.71)

in formula (3.70) uk is assumed to be 0 for k > N .

The same formula clearly holds true also if we calculate the bracket in L = uN⇤N +
· · ·+ u�M⇤�M ; in that case uk = 0 even if k < �M .

In the following we will use the abbreviated notation (⇤kf) = f(x + ✏x) where ⇤
acts on all the functions on its right, inside the parenthesis, and the variables uk are
functions of x; in this notation formula (3.70) becomes

{un(x), um(y)}
1

(L) = Cn,m[un+m(⇤n�(x� y))� (⇤�mun+m�(x� y))]. (3.72)
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Second bracket

The explicit form of the second Poisson bracket calculated in L =
P

k6N uk⇤k is

{un(x), um(y)}
2

(L) = �2un(⇤num�(x� y)) + 2un(⇤�mum�(x� y))

�
X

n+m�N6l6N

cl,m

⇥

un+m�l(⇤n�lul�(x� y))� ul(⇤l�mun+m�l�(x� y))
⇤

(3.73)

where n, m 2 Z and uk = 0 for k > N and the constant is given by

cl,m =

8

>

<

>

:

2 l > m,

0 l = m,

�2 l < m.

(3.74)

The same formula holds in the case L = uN⇤N + · · ·+ u�M⇤�M but the sum must
be taken with the limits n + m �N 6 l 6 N and �M 6 l 6 n + m + M at the same
time; this is equivalent to say that uk is nonzero only for �M 6 k 6 N .

Remark 39 One can easily show that the following is equivalent to (3.73)

{un(x), um(y)}
2

(L) = �2un(⇤num�(x� y)) + 2un(⇤�mum�(x� y))
+ 2un(⇤n�mum�(x� y))� 2umun�(x� y)

+
X

l<m

[4un+m�l(⇤n�lul�(x� y))� 4ul(⇤l�mun+m�l�(x� y))]. (3.75)

This observation is based on the identity
n
X

l=m

[un+m�l⇤n�lul � ul⇤l�mun+m�l] = 0, (3.76)

hence the sum in (3.75) can be replaced with
P

l6n. An alternative way of writing the
sum in (3.75) is

X

l<m

!
min(N,m�1)

X

l=max(�M,n+m�N)

(3.77)

or
X

l6n

!
min(N,n)

X

l=max(�M,n+m�N)

. (3.78)

Third bracket

The explicit form of the third Poisson bracket calculated in L =
P

k6N uk⇤k is

{un(x), um(y)}
3

(L) =
X

k,l6N
k+l>n+m�N

h

c
1

uk(⇤kul)(⇤k+l�mun+m�k�l�(x� y))

� c
2

ul(⇤n�kuk)(⇤l�mun+m�k�l�(x� y))

+ c
3

uk(⇤k+l�mun+m�k�l)(⇤k�mul�(x� y))
i

(3.79)
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where the constants are given by

c
1

= c
2

� c
3

, c
2

=

(

2 n < k,

0 n > k,
c
3

=

(

0 m < l,

2 m > l.
(3.80)

The same formula is true, considering uk nonzero only for �M 6 k 6 N , in the case
L = uN⇤N + · · ·+ u�M⇤�M .

3.3.4 Reductions

To obtain the Poisson brackets for the bigraded Toda hierarchy we need to reduce the
brackets, found so far on the algebra A+, to the a�ne subspace of that algebra given
by operators of the form

L = ⇤N + uN�1

⇤N�1 + · · ·+ u�M⇤�M . (3.81)

We will perform such reduction in two steps, first to a linear subspace of A+, then to
the a�ne subspace given by fixing uN = 1.

Linear subspaces

Here we consider reductions of the Poisson brackets to the linear subspace of A+ with
elements of the form

L = uN⇤N + uN�1

⇤N�1 + . . . with N > 0 fixed, (3.82)

and to the linear subspace with elements (bigraded case)

L = uN⇤N + · · ·+ u�M⇤�M with N > 0, M > 0 fixed. (3.83)

In the case of the first and second Poisson brackets this reduction is very simple
due to the follow observation

Lemma 40 For both the linear (i = 1) and the quadratic brackets (i = 2) defined
above, we have

{un(x), um(y)}i = 0 for n 6 N and m > N (3.84)
if L = uN⇤N + . . . and

{un(x), um(y)}i = 0 for �M 6 n 6 N and m /2 [�M,N ] (3.85)

for L = uN⇤N + · · ·+ u�M⇤�M .

This means that the o↵-diagonal part Puv (in the notations of Lemma 35) of both
Poisson tensors P

1

and P
2

is zero, hence the correction term in (3.52) vanishes and the
reduced brackets have simply the form (3.70) and (3.73).

Remark 41 The third Poisson bracket does not admit this simple kind of reduction;
indeed the analogous of Lemma 40 doesn’t hold: for example {uN (x), uN+1

}
3

is not
zero since it always contains the non-zero term �2uN (⇤NuN )(⇤N�1u

1

�(x� y)) (when
k = N , l = N). One should hence apply a Dirac reduction, that however we won’t
develop here, since it is enough for us to consider the bihamiltonian structure.
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A�ne subspaces

Here we want to reduce the Poisson brackets to the a�ne subspace obtained from the
previous reduction by setting uN = 1 i.e. either to the case

L = ⇤N + uN�1

⇤N�1 + . . . (3.86)

or to the bigraded case

L = ⇤N + uN�1

⇤N�1 + · · ·+ u�M⇤�M . (3.87)

In the case of the first Poisson bracket it is easy to check that

{uN , um} = 0 (3.88)

for each m, i.e. uN is a Casimir, hence we can simply restrict the bracket without any
correction, just by imposing uN = 1.

The second Poisson bracket needs however a correction term

Proposition 42 The explicit form of the reduced second Poisson bracket is

{un(x), um(y)}
2

(L) = �2un(⇤num�(x� y)) + 2un(⇤�mum�(x� y))

�
X

l

cl,m

�

un+m�l(⇤n�lul�(x� y))� ul(⇤l�mun+m�l�(x� y))
�

� 2
�

un(1 + ⇤�N )(1 + ⇤N )(⇤�N � ⇤N )�1(⇤n � 1)(1� ⇤�m)um�(x� y)
�

, (3.89)

where uN = 1; moreover uk is assumed to be zero for k > N in the case of the reduction
(3.86) and for k /2 [�M,N ] for the reduction (3.87). The constant cl,m si given by
(3.74).

Proof We essentially need to apply Lemma 35. Consider the case L = uN⇤N + . . . , the
other case being completely analogous. In the notations of Lemma 35, P

2

: U⇤�V ⇤ !
U � V where

V =
�

uN⇤N
 

U =
�

uN�1

⇤N�1 + . . .
 

(3.90)

V ⇤ =
�

⇤�NX�N

 

V =
n

⇤kXk + · · ·+ ⇤�N+1X�n+1

, k arbitrary
o

. (3.91)

Then using the definition of P
2

one finds that the correction term in (3.52) is given by

�(Puv � P�1

vv � Pvu)(X̃) = �2[L̃, ((1 + ⇤�N )(⇤�N � ⇤N )�1(⇤N + 1)[L, X̃]
0

)] (3.92)

where X̃ 2 U⇤, L̃ = uN�1

⇤N�1 + · · · 2 U . One then concludes by substituting
X̃ = ⇤�m�(x� y). ⇤

Remark 43 We can isolate in the sum in (3.89) the terms that contain uN : these give

4(⇤N�mun+m�N�(x� y))� 4un+m�N (⇤n�N�(x� y)) (3.93)

and the sum must be taken on all the other terms.
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Remark 44 The correction term in general is non-local due to the presence of (⇤�N�
⇤N )�1. As in the previous chapter we can set ⇤ = e✏@ and ask whether (⇤�N �⇤N )�1

makes sense as a formal power series in ✏. This amounts to check if it acts on something
that is in the image of ⇤�N �⇤N ; this image coincides with the image of ⇤�1�1 since

(⇤�N � ⇤N ) = (⇤N + 1)(⇤�N+1 + · · ·+ 1)(⇤�1 � 1). (3.94)

This is clearly always true hence the bracket is always well-defined as a formal power
series in ✏.

3.3.5 Bihamiltonian structure for (M, N)-di↵erence operators

For clarity we summarize here the form of the Poisson pencil on the space of operators
of the form (3.81)

Theorem 45 The following brackets give two compatible Poisson structures in the
variables uN�1

(x), . . . , u�M (x) for N,M > 0:

{un(x), um(y)}
1

= Cn,m[un+m(⇤n�(x� y))� (⇤�mun+m�(x� y))], (3.95)

{un(x), um(y)}
2

= 2un((⇤n + 1)(⇤�m � 1)um�(x� y))

+ 4
X

l<m

�

un+m�l(⇤n�lul�(x� y))� ul(⇤l�mun+m�l�(x� y))
�

� 2
�

un(1 + ⇤�N )(1 + ⇤N )(⇤�N � ⇤N )�1(⇤n � 1)(1� ⇤�m)um�(x� y)
�

(3.96)

where

Cn,m =

(

�1 n 6 0
1 n > 0

+

(

�1 m 6 0
1 m > 0.

(3.97)

Remark 46 A further version of the formula (3.96) is obtained by semplification of
the first and third terms on the RHS

{un(x), um(y)}
2

= 4
X

l<m

�

un+m�l(⇤n�lul�(x� y))� ul(⇤l�mun+m�l�(x� y))
�

+ 4
�

un(1� ⇤�N )�1(⇤n�N � 1)(1� ⇤�m)um�(x� y)
�

. (3.98)

Remark 47 The reduction procedure works also for M = 0 (see Remark 31 for the
definition of the corresponding hierarchy), hence these are compatible Poisson brackets
in this case, too. Frenkel and Reshetikhin [24] have considered related Poisson structures
in the context of deformations of the classical W -algebras.
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The second Poisson bracket of Frenkel and Reshetikhin (see [23])

{ti(z), tj(w)}
2

=
X

m2Z

⇣w

z

⌘m (1� qim)(1� qm(N�j))
1� qmN

ti(z)tj(w)

+
min(i,N�j)

X

r=1

�

✓

wqr

z

◆

ti�r(w)tj+r(z)

�
min(i,N�j)

X

r=1

�

✓

w

zqj�i+r

◆

ti�r(z)tj+r(w). (3.99)

reduces to (3.96) (multiplied by a factor �1

4

) in the case M = 0 if we identify w = qy,
z = qx, tk = (�1)kuN�k and substitute �(qx) ! �(x), i ! n, j ! m. The infinite
sum in the first term gives the Dirac correction; to evaluate it one uses the definition
�(qx) =

P

m2Z qmx. For example it is easy to show (multiplying on the left by 1� ⇤N

that

(1� ⇤N )�1�(qx) =
X

m

qxm

1� qmN
. (3.100)

In the case of the first bracket, however, there is a discrepancy since the bracket
proposed in [24] is quadratic in the fields, while our bracket (3.95) is linear.

3.3.6 Examples

Example 48 (N=1) Let’s start from the simplest case N = 1; restricting the Poisson
brackets to the linear subspace of elements of the form

L = u
1

⇤ + u
0

+ . . . (3.101)

we don’t have to add any corrective term, as explained above. In this case we have
an infinite number of fields uk hence there’s an infinite number of non-zero brackets
between them; spelling out the first entries of formulas (3.70) and (3.89) we obtain

First bracket

{u
1

(x), uk(y)}
1

= 0 k 6 1 (3.102a)
{u

0

(x), u
0

(y)}
1

= 0 (3.102b)
{u

0

(x), u�1

(y)}
1

= �2[u�1

�(x� y)� (⇤u�1

�(x� y))] (3.102c)

{u
0

(x), u�2

(y)}
1

= �2[u�2

�(x� y)� (⇤2u�2

�(x� y))] (3.102d)

{u�1

(x), u�1

(y)}
1

= �2[u�2

(⇤�1�(x� y))� (⇤u�2

�(x� y))] (3.102e)

{u�1

(x), u�2

(y)}
1

= �2[u�3

(⇤�1�(x� y))� (⇤2u�3

�(x� y))] (3.102f)

{u�2

(x), u�2

(y)}
1

= �2[u�4

(⇤�2�(x� y))� (⇤2u�4

�(x� y))] (3.102g)
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Second bracket

{u
1

(x), u
1

(y)}
2

= �2u
1

(⇤u
1

�(x� y)) + 2u
1

(⇤�1u
1

�(x� y)) (3.103a)

{u
1

(x), u
0

(y)}
2

= 0 (3.103b)

{u
1

(x), u�1

(y)}
2

= �2u�1

u
1

�(x� y) + 2u
1

(⇤2u�1

�(x� y)) (3.103c)

{u
0

(x), u
0

(y)}
2

= 4u
1

(⇤u�1

�(x� y))� 4u�1

(⇤�1u
1

�(x� y)) (3.103d)

{u
0

(x), u�1

(y)}
2

= �4u
0

u�1

�(x� y) + 4u
0

(⇤u�1

�(x� y))

+ 4u
1

(⇤2u�2

�(x� y))� 4u�2

(⇤�1u
1

�(x� y)) (3.103e)

{u�1

(x), u�1

(y)}
2

= �2u�1

(⇤�1u�1

�(x� y)) + 2u�1

(⇤u�1

�(x� y))

+ 4u
1

(⇤2u�3

�(x� y))� 4u�3

(⇤�2u
1

�(x� y))

+ 4u
0

(⇤u�2

�(x� y))� 4u�2

(⇤�1u
0

�(x� y)) (3.103f)

Recall that the third bracket doesn’t have a simple reduction to the N = 1 subspace.

Let’s consider now the reduction to the a�ne subspace u
1

= 1. The first bracket
doesn’t need any correction term, as we have seen before, hence the reduced bracket is ob-
tained just by setting u

1

= 1. For the second bracket, we have to add to {un(x), um(y)}
2

a correction term that is given by

�2un(1 + ⇤�1)(⇤n � 1)⇤(1 + ⇤ + · · ·+ ⇤�m�1)um�(x� y) (3.104)

for m 6 0 and is 0 if m = 0; hence in the N = 1 case the nonlocal terms (⇤�1 � ⇤)�1

are not present.

Example 49 (N=1, M=1 and the Toda chain) The reduced brackets in the case

L = u
1

⇤ + u
0

+ u�1

⇤�1 (3.105)

are simply obtained by putting uk = 0 for k < �1 in equations (3.102) and (3.103); the
only non-zero elements are

First bracket

{u
0

(x), u�1

(y)}
1

= �2[u�1

�(x� y)� (⇤u�1

�(x� y))] (3.106)

Second bracket

{u
1

(x), u
1

(y)}
2

= �2u
1

(⇤u
1

�(x� y)) + 2u
1

(⇤�1u
1

�(x� y)) (3.107a)

{u
1

(x), u�1

(y)}
2

= �2u�1

u
1

�(x� y) + 2u
1

(⇤2u�1

�(x� y)) (3.107b)

{u
0

(x), u
0

(y)}
2

= 4u
1

(⇤u�1

�(x� y))� 4u�1

(⇤�1u
1

�(x� y)) (3.107c)
{u

0

(x), u�1

(y)}
2

= �4u
0

u�1

�(x� y) + 4u
0

(⇤u�1

�(x� y)) (3.107d)

{u�1

(x), u�1

(y)}
2

= �2u�1

(⇤�1u�1

�(x� y)) + 2u�1

(⇤u�1

�(x� y)) (3.107e)
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If we now perform the reduction u
1

= 1 the only term that gets a correction is
{u�1

(x), u�1

(y)}
2

to which we have to add

2u�1

(⇤� ⇤�1)u�1

�(x� y), (3.108)

finally obtaining the Toda chain Poisson brackets whose non-zero elements are

First bracket

{u
0

(x), u�1

(y)}
1

= �2[u�1

�(x� y)� (⇤u�1

�(x� y))] (3.109)

Second bracket

{u
0

(x), u
0

(y)}
2

= 4(⇤u�1

�(x� y))� 4u�1

(⇤�1�(x� y)) (3.110a)
{u

0

(x), u�1

(y)}
2

= �4u
0

u�1

�(x� y) + 4u
0

(⇤u�1

�(x� y)) (3.110b)

{u�1

(x), u�1

(y)}
2

= �4u�1

(⇤�1u�1

�(x� y)) + 4u�1

(⇤u�1

�(x� y)). (3.110c)

Remark 50 These Poisson brackets are respectively equal to (2.13) multiplied by 2✏
and (2.14) multiplied by 4✏.

Example 51 (N=2, M=2) Now consider the bigraded case with

L = u
2

⇤2 + u
1

⇤ + u
0

+ u�1

⇤�1 + u�2

⇤�2; (3.111)

the only non-zero entries of the first and second brackets are

First bracket

{u
1

(x), u
1

(y)}
1

= 2u
2

(⇤�(x� y))� 2(⇤�1u
2

�(x� y)) (3.112a)
{u

0

(x), u�1

(y)}
1

= �2[u�1

�(x� y)� (⇤u�1

�(x� y))] (3.112b)

{u
0

(x), u�2

(y)}
1

= �2[u�2

�(x� y)� (⇤2u�2

�(x� y))] (3.112c)

{u�1

(x), u�1

(y)}
1

= �2[u�2

(⇤�1�(x� y))� (⇤u�2

�(x� y))] (3.112d)
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Second bracket

{u
2

(x), u
2

(y)}
2

= 2u
2

(⇤�2u
2

�(x� y))� 2u
2

(⇤2u
2

�(x� y)) (3.113a)

{u
2

(x), u
1

(y)}
2

= 2u
2

(⇤�1u
1

�(x� y))� 2u
2

u
1

�(x� y)

+ 2u
2

(⇤u
1

�(x� y))� 2u
2

(⇤2u
1

�(x� y)) (3.113b)
{u

2

(x), u�1

(y)}
2

= �2u
2

u�1

�(x� y) + 2u
2

(⇤u�1

�(x� y))

� 2u
2

(⇤2u�1

�(x� y)) + 2u
2

(⇤3u�1

�(x� y)) (3.113c)

{u
2

(x), u�2

(y)}
2

= �2u�2

u
2

�(x� y) + 2u
2

(⇤4u�2

�(x� y)) (3.113d)

{u
1

(x), u
1

(y)}
2

= �2u
1

(⇤u
1

�(x� y)) + 2u
1

(⇤�1u
1

�(x� y))

� 4u
0

(⇤�1u
2

�(x� y)) + 4u
2

(⇤u
0

�(x� y)) (3.113e)

{u
1

(x), u
0

(y)}
2

= �4u�1

(⇤�1u
2

�(x� y)) + 4u
2

(⇤2u�1

�(x� y)) (3.113f)

{u
1

(x), u�1

(y)}
2

= �2u�1

u
1

�(x� y) + 2u
1

(⇤2u�1

�(x� y))

� 4u�2

(⇤�1u
2

�(x� y)) + 4u
2

(⇤3u�2

�(x� y)) (3.113g)
{u

1

(x), u�2

(y)}
2

= �2u
1

u�2

�(x� y)� 2u
1

(⇤u�2

�(x� y))

+ 2u
1

(⇤2u�2

�(x� y)) + 2u
1

(⇤3u�2

�(x� y)) (3.113h)

{u
0

(x), u
0

(y)}
2

= 4u
1

(⇤u�1

�(x� y))� 4u�1

(⇤�1u
1

�(x� y))

� 4u�2

(⇤�2u
2

�(x� y)) + 4u
2

(⇤2u�2

�(x� y)) (3.113i)
{u

0

(x), u�1

(y)}
2

= �4u
0

u�1

�(x� y) + 4u
0

(⇤u�1

�(x� y))

+ 4u
1

(⇤2u�2

�(x� y))� 4u�2

(⇤�1u
1

�(x� y)) (3.113j)

{u
0

(x), u�2

(y)}
2

= �4u
0

u�2

�(x� y) + 4u
0

(⇤2u�2

�(x� y)) (3.113k)

{u�1

(x), u�1

(y)}
2

= �2u�1

(⇤�1u�1

�(x� y)) + 2u�1

(⇤u�1

�(x� y))

+ 4u
0

(⇤u�2

�(x� y))� 4u�2

(⇤�1u
0

�(x� y)) (3.113l)

{u�1

(x), u�2

(y)}
2

= �2u�1

(⇤�1u�2

�(x� y))� 2u�1

u�2

�(x� y)

+ 2u�1

(⇤u�2

�(x� y)) + 2u�1

(⇤2u�2

�(x� y)) (3.113m)

{u�2

(x), u�2

(y)}
2

= �2u�2

(⇤�2u�2

�(x� y)) + 2u�2

(⇤2u�2

�(x� y) (3.113n)

The first bracket reduced to the a�ne subspace u
2

= 1, i.e. with

L = ⇤2 + u
1

⇤ + u
0

+ u�1

⇤�1 + u�2

⇤�2 (3.114)

is simply

First bracket

{u
1

(x), u
1

(y)}
1

= 2(⇤�(x� y))� 2(⇤�1�(x� y)) (3.115a)
{u

0

(x), u�1

(y)}
1

= �2[u�1

�(x� y)� (⇤u�1

�(x� y))] (3.115b)

{u
0

(x), u�2

(y)}
1

= �2[u�2

�(x� y)� (⇤2u�2

�(x� y))] (3.115c)

{u�1

(x), u�1

(y)}
1

= �2[u�2

(⇤�1�(x� y))� (⇤u�2

�(x� y))]; (3.115d)

For the second bracket the non-local correction term

�2un(1 + ⇤�2)(1 + ⇤2)(⇤�2 � ⇤2)�1(⇤n � 1)(1� ⇤�m)um�(x� y) (3.116)
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must be added to {un(x), um(y)}
2

; the non-zero elements thus obtained are

Second bracket

{u
1

(x), u
1

(y)}
2

= �2u
1

(⇤u
1

�(x� y)) + 2u
1

(⇤�1u
1

�(x� y))

� 4u
0

(⇤�1�(x� y)) + 4(⇤u
0

�(x� y))

+ 2u
1

(1 + ⇤�2)(1 + ⇤2)(⇤�1 + ⇤)�1(⇤ + 1)�1(⇤� 1)u
1

�(x� y) (3.117a)

{u
1

(x), u
0

(y)}
2

= �4u�1

(⇤�1�(x� y)) + 4(⇤2u�1

�(x� y)) (3.117b)

{u
1

(x), u�1

(y)}
2

= �2u�1

u
1

�(x� y) + 2u
1

(⇤2u�1

�(x� y))

� 4u�2

(⇤�1�(x� y)) + 4(⇤3u�2

�(x� y))

� 2u
1

(1 + ⇤�2)(1 + ⇤2)(⇤�1 + ⇤)�1(⇤ + 1)�1(⇤� 1)⇤u�1

�(x� y) (3.117c)
{u

1

(x), u�2

(y)}
2

= �2u
1

u�2

�(x� y)� 2u
1

(⇤u�2

�(x� y))

+ 2u
1

(⇤2u�2

�(x� y)) + 2u
1

(⇤3u�2

�(x� y))

+ 2u
1

(1 + ⇤�2)(1 + ⇤2)(⇤�1 + ⇤)�1⇤(1� ⇤)u�2

�(x� y) (3.117d)

{u
0

(x), u
0

(y)}
2

= 4u
1

(⇤u�1

�(x� y))� 4u�1

(⇤�1u
1

�(x� y))

� 4u�2

(⇤�2�(x� y)) + 4(⇤2u�2

�(x� y)) (3.117e)
{u

0

(x), u�1

(y)}
2

= �4u
0

u�1

�(x� y) + 4u
0

(⇤u�1

�(x� y))

+ 4u
1

(⇤2u�2

�(x� y))� 4u�2

(⇤�1u
1

�(x� y)) (3.117f)

{u
0

(x), u�2

(y)}
2

= �4u
0

u�2

�(x� y) + 4u
0

(⇤2u�2

�(x� y)) (3.117g)

{u�1

(x), u�1

(y)}
2

= �2u�1

(⇤�1u�1

�(x� y)) + 2u�1

(⇤u�1

�(x� y))

+ 4u
0

(⇤u�2

�(x� y))� 4u�2

(⇤�1u
0

�(x� y))

� 2u�1

(1 + ⇤�2)(1 + ⇤2)(⇤�1 + ⇤)�1(⇤ + 1)�1(1� ⇤)u�1

�(x� y) (3.117h)

{u�1

(x), u�2

(y)}
2

= �2u�1

(⇤�1u�2

�(x� y))� 2u�1

u�2

�(x� y)

+ 2u�1

(⇤u�2

�(x� y)) + 2u�1

(⇤2u�2

�(x� y))

� 2u�1

(1 + ⇤�2)(1 + ⇤2)(⇤�1 + ⇤)�1(1� ⇤)u�2

�(x� y) (3.117i)

{u�2

(x), u�2

(y)}
2

= �2u�2

(⇤�2u�2

�(x� y)) + 2u�2

(⇤2u�2

�(x� y))

� 2u�2

(1 + ⇤�2)(1 + ⇤2)(⇤�1 + ⇤)�1(⇤�1 + 1)(1� ⇤)u�2

�(x� y). (3.117j)

3.4 Relation between Lax and Hamiltonian formulation
of the Extended bigraded Toda hierarchy

In this section we provide the explicit form of the Hamiltonian theorem, i.e. we show
that the flows previously defined in the Lax pair formalism can be expressed in terms
of suitable Hamiltonians through the first Poisson brackets defined above.

The main result is the following

Theorem 52 The Lax equations (3.16) can be written in the following Hamiltonian

56



form
d

dt↵,q
un = {un, h̄↵,q}1

(3.118)

where the Poisson bracket has the form (3.95) and the Hamiltonians are given by

h↵,q =
1
2

�(2� ↵
N )

�(q + 3� ↵
N )

Res(Lq+2� ↵

N ) ↵ = N � 1, · · · , 0 (3.119a)

h↵,q =
1
2

�(2 + ↵
M )

�(q + 3 + ↵
M )

Res(Lq+2+

↵

M ) ↵ = 0, · · · ,�M + 1 (3.119b)

h�M,q =
1
2

1
(q + 1)!

Res

✓

Lq+1(log L� 1
2
(

1
M

+
1
N

)cq+1

)
◆

. (3.119c)

where cq =
Pq

j=1

1

j and c
0

= 0.

Proof (of Theorem 52) The proof is based on the following Lemmas. Lemma 53
essentially gives the form of the first Hamiltonian operator that coincides with that
found before. Then one has to express pm in terms of the functional derivatives of the
Hamiltonians which is done in the following three lemmas.

Lemma 53 Let A =
P

m2Z ⇤mpm such that [A,L] = 0; then Lt = [A
+

, L] is equivalent
to

(un)t =
n+M
X

m=0

(⇤mu�m+n � u�m+n⇤n)pm (3.120a)

(un)t = �
�1

X

m=n�N

(⇤mu�m+n � u�m+n⇤n)pm (3.120b)

for �M 6 n 6 N � 1 and uN = 1.

Proof From [A
+

, L] = �[A�, L] it follows that the only nonzero terms in [A
+

, L] are
the coe�cients of ⇤k with �M 6 k < N ; hence the Lax equations Lt = [A

+

, L] are
well defined.

We have

[A
+

, L] = [A
+

, ⇤N ] + [A
+

,
N�1

X

k=�M

uk⇤k] (3.121)

the first term on the RHS gives only contributions of order ⇤k with k > N , while the
second term gives

X

n>�M

X

m>0

�M6k6N�1

k+m=n

[⇤m(pmuk)� uk(⇤npm)]⇤n; (3.122)

collecting powers of ⇤ we conclude.
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The second formula is obtained exactly in the same way, starting from Lt =
�[A�, L]. ⇤

If we could express pm, defined by A =
P

m ⇤mpm, in terms of the functional
derivative of some functional H

p�m =
�

�um
H (3.123)

we would obtain by the previous Lemma that the Lax equation Lt = [A
+

, L] would
become

(un)t =
N�1

X

m=�M

B(1)

nm

�

�um

1
2
H n = N � 1, . . . ,�M (3.124)

where

B(1)

nm = 2 ·

8

>

<

>

:

⇤̃�mun+m � un+m⇤̃n if n 6 0 and m 6 0,

�(⇤̃�mun+m � un+m⇤̃n) if n > 0 and m > 0,

0 otherwise.
(3.125)

If we define
{f̄ , ḡ}

1

:=
X

n,m

�f̄

�un
B(1)

nm

�ḡ

�um
(3.126)

this is easily seen to be precisely the first Poisson bracket defined before.

In the following three Lemmas we show how to relate pm with the functional deriva-
tive of some Hamiltonian. We consider first the usual case of integer powers of L, that
give the standard Toda flows.

Lemma 54 If A = Ln =
P

m2Z ⇤mpm then

p�m =
�

�um

✓

1
n + 1

Z

dx ResLn+1

◆

m = N � 1, · · · ,�M. (3.127)

Proof The proof of this and of the subsequent Lemmas essentially follows the proof of
(2.74) for the Toda chain hierarchy. As in that case we observe that the di↵erential of
L is

dL =
N�1

X

k=�M

duk⇤k (3.128)

where duk for k = N � 1, . . . ,�M are the basic di↵erentials of the ”coordinates” uk(x)
on the space of operators L of the form (3.1). The di↵erential of a functional H on
such space is obtained by functional derivation

dH =
Z

dx
X

k

�H

�uk(x)
duk(x). (3.129)

For a functional H

H =
Z

dx
1

n + 1
Res Ln+1 (3.130)
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we have
dH =

Z

dx Res(LndL) (3.131)

since for any di↵erence operator B =
P

k Bk⇤k it is easy to check that
Z

dx Res[B, dL]dx = 0. (3.132)

On the other hand

Res(LndL) = Res(
X

m

⇤mpm

N�1

X

k=�M

duk⇤k) (3.133)

=
N�1

X

k=�M

⇤�k(p�kduk) (3.134)

⇠
N�1

X

k=�M

p�kduk (3.135)

up to total derivatives, hence

dH =
Z

dx
N�1

X

k=�M

p�kduk. (3.136)

Finally comparing with (3.129) we obtain

Z

dx
N�1

X

k=�M

p�kduk =
Z

dy
�

�uk(y)

✓

1
n + 1

Z

dx ResLn+1

◆

duk(y) (3.137)

and, by the independence of the di↵erentials duk, we conclude. ⇤

Lemma 55 If A = Ln log L =
P

m2Z ⇤mpm then

p�k =
1

n + 1
�

�uk

Z

dx Res(Ln+1(log L� 1
2

1
n + 1

(
1
M

+
1
N

))) k = N � 1, . . . ,�M.

(3.138)

Proof First we show the following formula
Z

dx Res(Lpd log± L) =
Z

dx Res(Lp�1dL); (3.139)

this implies
Z

dx Res(Lpd log L) =
Z

dx
1
2
(

1
M

+
1
N

)Res(Lp�1dL). (3.140)
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Using the formula
ep log± L = Lp (3.141)

we have

pRes(Lp�1dL) ⇠ Res dLp (3.142)
= Res dep log± L (3.143)

⇠ Res(
1
X

n=1

1
(n� 1)!

(p log± L)n�1p d log± L) (3.144)

= pRes(ep log± Ld log± L) (3.145)
= pRes(Lpd log± L) (3.146)

up to total derivatives.

Using (3.140) one shows

d

Z

dx Res(Ln+1(log L� 1
2
(

1
M

+
1
N

)
1

n + 1
)) = (3.147)

=
Z

dx [Res(Ln+1d log L) + (n + 1)Res(LndL(log L� 1
2

1
n + 1

(
1
M

+
1
N

)))] (3.148)

=
Z

dx (n + 1)Res(Ln log L dL). (3.149)

Essentially as in the previous lemma, one obtains that

Z

dx (n + 1)
N�1

X

k=�M

p�kduk =

=
Z

dx
N�1

X

k=�M

�

�uk(x)

✓

Z

dy Res[Ln+1(log L� 1
2

1
n + 1

(
1
M

+
1
N

))]
◆

duk(x) (3.150)

and then concludes. ⇤

Lemma 56 If A = LnL
q

N =
P

m2Z ⇤mpm then

p�m =
1

n + 1 + q
N

�

�um

Z

dx Res(Ln+1L
q

N ) m = N � 1, . . . ,�M. (3.151)

The same formula holds also in the case N ! M .

Proof We have

d

Z

dx Res(Ln+1+

q

N ) = d

Z

dx Res(L
nN+N+q

N ) (3.152a)

= (nN + N + q)
Z

dx Res(L
nN+N+q�1

N dL
1
N ) (3.152b)

=
Z

dx
nN + N + q

N
Res(L

nN+q

N dL) (3.152c)
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where we have used the definition (L
1
N )N = L; as in previous lemmas

d

Z

dx Res(Ln+1L
q

N ) =
Z

dx (n + 1 +
q

N
)

N�1

X

k=�M

pkduk (3.153)

and the Lemma is proved. ⇤
Combining these three Lemmas with the observations made above one finally proves

the Theorem. ⇤

3.5 Tau symmetry

In this section we prove that the Hamiltonian densities defined above satisfy the tau
symmetry.

Theorem 57 The Hamiltonian densities h↵,q satisfy the tau symmetry, i.e. the fol-
lowing identities hold

{h↵,p�1

, h̄�,q}1

= {h�,q�1

, h̄↵,p}1

(3.154)

for ↵,� = N � 1, . . . ,�M and p, q > 0.

Proof The normalization of the Hamiltonians has been chosen such that

h↵,p = Res B↵,p+1

A↵,p = (B↵,p)+ (3.155)

for suitable di↵erence operators B↵,p that commute among themselves: [B↵,p, B�,q] = 0.
It follows that

@h↵,p�1

@t�,q
= Res[(B�,q)+, B↵,p] (3.156a)

= Res[(B↵,p)+, B�,q] (3.156b)

=
@h�,q�1

@t↵,p
(3.156c)

since Res[(·)
+

, (·)
+

] = 0 and Res[(·)�, (·)�] = 0; the Theorem is proved. ⇤
Moreover, using the terminology of [19], we have that this tau structure is compat-

ible with spatial translations (up to an irrelevant factor 1

2

), i.e. the Hamiltonian h̄�M,0

corresponds to the x-translations

@

@t�M,0
· · · = {·, h̄�M,0}1

; (3.157)

this follows from the fact that A�M,0 = ✏
2

@x.

In complete analogy with the case of the Toda chain hierarchy, one can define the
functions ⌦↵,p;�,q and then use the previous Theorem to show the existence of the tau
function for this hierarchy.
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Chapter 4

Two-dimensional Toda hierarchy

In this chapter we provide an R-matrix formulation for the two-dimensional Toda hi-
erarchy. We obtain a bihamiltonian structure on the algebra A+ � A� by providing
an R-matrix associated to a non-trivial splitting. After suitable reductions to a�ne
subspaces we obtain the Poisson brackets for the two-dimensional Toda hierarchy of
Ueno-Takasaki [47] and for a generalized bigraded two-dimensional Toda hierarchy.

4.1 Ueno-Takasaki formulation

The two-dimensional Toda lattice hierarchy has been formulated in [47] by Ueno and
Takasaki. We will recall their definition, using the language of di↵erence operators.

Consider two (formal) di↵erence operators of the form

L = ⇤ + u
0

+ u�1

⇤�1 + . . . (4.1)

L̄ = ū�1

⇤�1 + ū
0

+ ū
1

⇤ + . . . (4.2)

where the coe�cients, following our usual notations, are functions of the continuous
variable x. We define two sets of flows, denoted by the times tq and t̄q with q > 0, by
the following Lax equations

Lt
q

= [(Lq)
+

, L] L̄t
q

= [(Lq)
+

, L̄] (4.3)

and

L
¯t
q

= [�(L̄q)�, L] L̄
¯t
q

= [�(L̄q)�, L̄]. (4.4)

All the commutators are well-defined since the operators (Lp)
+

and (L̄q)� are of
bounded order; the following obvious observation is useful when trying to find the
R-matrix formulation of the hierarchy.

Remark 58 In the equation (4.3a) (an analogous observation holds for the equation
(4.4b) ) we can equivalently use �(Lq)� instead of (Lq)

+

since Lq commutes with L;
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however in the equation (4.3b) (and in (4.4a) analogously) we must use (Lq)
+

, otherwise
the commutator is not well-defined.

These equations are compatible: this follows from the zero-curvature or Zakharov-
Shabat representation given by the following

Proposition 59 ([47]) The Toda lattice hierarchy (4.3), (4.4) is equivalent to the
system of equations

@t
p

(Lq)
+

� @t
q

(Lp)
+

+ [(Lq)
+

, (Lp)
+

] = 0 (4.5)
@

¯t
p

(L̄q)� � @¯t
q

(L̄p)� � [(L̄q)�, (L̄p)�] = 0 (4.6)

@
¯t
p

(Lq)
+

+ @t
q

(L̄p)� � [(Lq)
+

, (L̄p)�] = 0. (4.7)

4.2 R-matrix formulation

In this section we first define an algebra of di↵erence operators which is naturally
associated with the two-dimensional Toda hierarchy. Then we introduce an R-matrix
and we show that it comes from a non trivial splitting of the algebra. We check that
the skew-symmetric part of the R-matrix satisfies the modified Yang-Baxter equation
and thus defines two compatible Poisson structures.

Since the two-dimensional Toda hierarchy is characterized by two Lax operators L
and L̄ that are respectively elements of A+ and A�, it is natural to consider A+ �A�

as the correct algebra in this case.

The natural inner product on A+�A� is defined in the obvious way from the trace
form

TrX � X̄ = Tr X + Tr X̄ (4.8)

for X � X̄ 2 A+ �A�.

We can guess the form of the R-matrix (a linear operator on A+�A�) by comparing
equations (4.3)-(4.4) with (3.39); we obtain

R(X, X̄) = (X
+

�X� + 2X̄�, X̄� � X̄
+

+ 2X
+

) (4.9)

where (X, X̄) 2 A+ �A�.

We emphasize that this R-matrix is not simply given by a direct sum of the pre-
viously considered R-matrices on A+ and A�, since equations (4.3b) and (4.4a) give a
coupling between L and L̄, that must be taken into account.

The operator R satisfies the modified Yang-Baxter equation (3.22) since it is given
by a splitting of the Lie algebra A+ �A�; indeed we can write

R = P � P̃ (4.10)

where P and P̃ , defined by

P (X, X̄) = (X
+

+ X̄�, X
+

+ X̄�) P̃ (X, X̄) = (X� � X̄�, X̄
+

�X
+

), (4.11)
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are projections operators, i.e. P 2 = P , P̃ 2 = P̃ , P̃P = 0 = PP̃ and P + P̃ = Id. Thus
the splitting associated to the R-matrix above is

A+ �A� =
⇣

diag(A0 �A0)
⌘

�
⇣

(A+)� � (A�)
+

⌘

. (4.12)

As in the “one-dimensional” case (given by the algebra A+ with the splitting
(A+)

+

� (A⇤)�) the splitting is not isotropic with respect to the natural inner product;
indeed the R matrix is not skew-symmetric since the adjoint R⇤ is given by

R⇤(X, X̄) = (X60

�X>0

+ 2X̄60

, X̄>0

� X̄60

+ 2X>0

) = P ⇤ � P̃ ⇤ (4.13)

where the dual projections are

P ⇤(X, X̄) = (X60

+X̄60

, X>0

+X̄>0

) P̃ ⇤(X, X̄) = (X>0

�X̄60

, X̄60

�X>0

). (4.14)

Moreover one can verify1 that

Proposition 60 The skew-symmetric part A of the R-matrix (4.9)

A(X, X̄) = (X>0

�X<0

� X̄
0

, X̄<0

� X̄>0

+ X
0

) (4.15)

satisfies the modified Yang-Baxter equation (3.22).

Proof It is checked by substitution in equations (3.21) and (3.22). ⇤
Thus, by the previous general theorems, there are on A+ � A� three compatible

Hamiltonian structures (3.43). We will consider only the first two structures since the
third one doesn’t behave well under restriction to a subspace. We summarize this result
and the explicit form of the Poisson tensors in the following

Proposition 61 On the Lie algebra A+�A� there are two compatible Poisson struc-
tures given by

P
1

(L, L̄)X � X̄ =
⇣

2[L,X� � X̄�]� 2([L,X] + [L̄, X̄])60

,

2[L̄, X̄
+

�X
+

]� 2([L,X] + [L̄, X̄])>0

⌘

(4.18a)

P
2

(L, L̄)X � X̄ =
⇣

2[L, (LX + XL)� � (L̄X̄ + X̄L̄)�]

� 2L([L,X]60

+ [L̄, X̄]60

)� 2([L,X]60

+ [L̄, X̄]60

)L,

2[L̄, (L̄X̄ + X̄L̄)
+

� (LX + XL)
+

]

� 2L̄([L,X]>0

+ [L̄, X̄]>0

)� 2([L,X]>0

+ [L̄, X̄]>0

)L̄
⌘

. (4.18b)

1
More generally one can prove that

R(X � ¯X) = (X+ �X� � 2a ¯X�,�a(

¯X� � ¯X+) + 2X+) (4.16)

satisfies the modified Yang-Baxter equation for a = ±1; however, given the adjoint

R⇤
(X � ¯X) = (X60 �X

>0 + 2

¯X60,�2aX
>0 + a ¯X60 � a ¯X

>0) (4.17)

the skew-symmetric part A satisfies the modified Yang-Baxter equation only for a = �1.
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4.3 Explicit form of Poisson brackets

Here we calculate the explicit form of the Poisson brackets above in the usual notation.
We have not reduced the brackets yet.

Let N , M be two positive integers. The explicit form of the first Poisson struc-
ture for two-dimensional Toda calculated in (L, L̄) for L =

P

k6N uk⇤k and L̄ =
P

l>�M ūl⇤l is

First bracket

{un(x), um(y)}
1

(L, L̄) = 2(c(m) + c(n)� 1)[un+m(⇤n�(x� y))� (⇤�mun+m�(x� y))]
(4.19a)

{un(x), ūm(y)}
1

(L, L̄) = 2c(m)[(⇤�mum+n�(x� y))� um+n(⇤n�(x� y))]
+ 2(1� c(n))[(⇤�mūm+n�(x� y))� ūm+n(⇤n�(x� y))]

(4.19b)

{ūn(x), ūm(y)}
1

(L, L̄) = 2(1� c(n)� c(m))[ūm+n(⇤n�(x� y))� (⇤�mūm+n�(x� y))]
(4.19c)

where the constant c(n) is defined by

c(n) =

(

1 n > 0
0 n 6 0.

(4.20)

The second Poisson structure calculated in (L, L̄) for L =
P

k6N uk⇤k and L̄ =
P

l>�M ūl⇤l is given by

Second bracket

{un(x), um(y)}
2

(L, L̄) = �2un(⇤num�(x� y)) + 2un(⇤�mum�(x� y))
+ 2un(⇤n�mum�(x� y))� 2umun�(x� y)

+
X

l<m

[4un+m�l(⇤n�lul�(x� y))� 4ul(⇤l�mun+m�l�(x� y))] (4.21a)

{un(x), ūm(y)}
2

(L, L̄) = 2un(⇤n�mūm�(x� y))� 2ūmun�(x� y)
� 2un(⇤nūm�(x� y)) + 2un(⇤�mūm�(x� y))

+
X

l<m

[4(⇤l�mun+m�l)(⇤�mūl�(x� y))� 4un+m�l(⇤n+m�lūl)(⇤n�(x� y))]

(4.21b)

{ūn(x), ūm(y)}
2

(L, L̄) = 2ūn(⇤nūm�(x� y))� 2ūn(⇤�mūm�(x� y))
+ 2ūn(⇤n�mūm�(x� y))� 2ūmūn�(x� y)

+
X

k>m

[4ūn+m�k(⇤n�kūk�(x� y))� 4ūk(⇤k�mūn+m�k�(x� y))]. (4.21c)
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4.4 Reductions

In this section we calculate the reduction of the Poisson brackets to a�ne subspaces of
operators of the form

L = ⇤N + uN�1

⇤N�1 + . . . L̄ = ū�M⇤�M + ū�M+1

⇤�M+1 + . . . (4.22)

hence obtaining a pencil of Poisson brackets for each of these bigraded two-dimensional
Toda hierarchies. In particular for N = M = 1 we obtain the bihamiltonian structure
for the usual two-dimensional Toda hierarchy.

As in the “one dimensional” case the reduction to the linear subspaces given by
operators of the form

L =
X

k6N

uk⇤k and L̄ =
X

l>�M

ūl⇤l (4.23)

is trivial.

Let’s perform the reduction to the a�ne subspace given by uN = 1; using Lemma
35 we obtain that the reduced second Poisson tensor in this case is given by

P rid(X̃ � X̄) =
⇣

2[L, (LX̃ + X̃L)� � (L̄X̄ + X̄L̄)�]

� 2L[L, X̃]60

� 2L[L̄, X̄]60

� 2[L, X̃]60

L� 2[L̄, X̄]60

L

� 2[L, (⇤�N + 1)(⇤N + 1)(⇤�N � ⇤N )�1([L, X̃]
0

+ [L̄, X̄]
0

)],

2[L̄, (L̄X̄ + X̄L̄)
+

� (LX̃ + X̃L)
+

]

� 2L̄([L, X̃]>0

+ [L̄, X̄]>0

)� 2([L, X̃]>0

+ [L̄, X̄]>0

)L̄

� 2[L̄, ((⇤�N + 1)(⇤N + 1)(⇤�N � ⇤N )�1([L, X̃]
0

+ [L̄, X̄]
0

))];
⌘

(4.24)

the first Poisson structure does not need any correction term and its explicit form is
simply obtained by putting uN = 1 in (4.19).

The explicit form of the second reduced Poisson bracket is
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Second bracket

{un(x), um(y)}
2

(L, L̄) = �2un(⇤num�(x� y)) + 2un(⇤�mum�(x� y))
+ 2un(⇤n�mum�(x� y))� 2umun�(x� y)

+
X

l<m

[4un+m�l(⇤n�lul�(x� y))� 4ul(⇤l�mun+m�l�(x� y))]

+ 2un(⇤N + 1)(⇤�N + 1)(⇤�N � ⇤N )�1(⇤n � 1)(⇤�m � 1)um�(x� y)
(4.25a)

{un(x), ūm(y)}
2

(L, L̄) = 2un(⇤n�mūm�(x� y))� 2unūm�(x� y)
� 2un(⇤nūm�(x� y)) + 2un(⇤�mūm�(x� y))

+
X

l<m

[4(⇤l�mun+m�l)(⇤�mūl�(x� y))� 4un+m�l(⇤n+m�lūl)(⇤n�(x� y))]

+ 2un(⇤N + 1)(⇤�N + 1)(⇤�N � ⇤N )�1(⇤n � 1)(⇤�m � 1)ūm�(x� y)
(4.25b)

{ūn(x), ūm(y)}
2

(L, L̄) = 2ūn(⇤nūm�(x� y))� 2ūn(⇤�mūm�(x� y))
+ 2ūn(⇤n�mūm�(x� y))� 2ūmūn�(x� y)

+
X

k>m

[4ūn+m�k(⇤n�kūk�(x� y))� 4ūk(⇤k�mūn+m�k�(x� y))]

+ 2ūn(⇤N + 1)(⇤�N + 1)(⇤�N � ⇤N )�1(⇤n � 1)(⇤�m � 1)ūm�(x� y)
(4.25c)

Remark 62 The second Poisson brackets can be also rewritten in the following form

{un(x), um(y)}
2

= 4
N�n
X

l=1

[un+l(⇤n�m+lum�l�(x� y))� um�l(⇤�lun+l�(x� y))]

+ 4un(⇤�m � 1)(1� ⇤n�N )(1� ⇤�N )�1um�(x� y) (4.26a)

{un(x), ūm(y)}
2

= +4un(⇤�m � 1)(1� ⇤n�N )(1� ⇤�N )�1ūm�(x� y) (4.26b)

+ 4
min(M+m,N�n)

X

k=1

[(⇤�kun+k)(⇤�mūm�k�(x� y))� un+k(⇤n+kūm�k)⇤n�(x� y)]

{ūn(x), ūm(y)}
2

= 4
n+M
X

l=1

[ūn�l⇤n�m�lūl+m�(x� y)� ūl+m⇤lūn�l�(x� y)]

+ 4ūn(⇤n � 1)(1� ⇤�m�N )(1� ⇤�N )�1ūm�(x� y) (4.26c)

We summarize the results in the following

Theorem 63 The brackets (4.19) and (4.25) give two compatible Poisson structures
in the variables un for n < N and ūm for m > �M .

We will call these Poisson brackets for the (M,N)-bigraded two-dimensional Toda hi-
erarchy. In particular for N = M = 1 we should obtain the bihamiltonian structure
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for the usual two-dimensional Toda. Notice however that to have a complete descrip-
tion of the bihamiltonian structure of the hierarchy we should relate the Hamiltonian
flows with the Lax pair definition given above and in particular we should obtain the
recursion relation for the Hamiltonians.

Remark 64 The definition of logarithm makes sense even in the two-dimensional Toda
case; the dressing operators are defined by

L = P⇤NP�1 L̄ = Q⇤�MQ�1 (4.27)

and the two logarithms by

log L = N✏P@P�1 log L̄ = �M✏Q@Q�1. (4.28)

In this case however we cannot use the same trick as before to obtain a logarithm that
is a di↵erence operator like in (3.8). So we cannot define additional logarithmic flows
as before.

4.5 Hamiltonian representation

We obtain now the Hamiltonian representation of the flows defined in (4.3) and (4.4).
On the algebra A+ �A� we can define the functions

hp =
1
2

1
p + 1

Z

dx Res Lp+1 h̃p =
1
2

1
p + 1

Z

dx Res L̄p+1 (4.29)

where (L, L̄) is a point in A+ �A�. We clearly have

dhp = (
1
2
Lp, 0) dh̃p = (0,

1
2
L̄p). (4.30)

From the R-matrix construction, since hp and h̄p are invariant functions on the algebra,
we have that (3.48) gives

@L̂

@tp
= [Rdhp, L̂] = P

1

dhp (4.31a)

@L̂

@ t̄p
= [Rdh̃p, L̂] = P

1

dh̃p (4.31b)

where L̂ = (L, L̄). Spelling out this relations, using the R-matrix (4.9), one obtains the
Hamiltonian formulation of the flows (4.3) and (4.4). These formulas continue to hold
when we restrict to an a�ne subspace. Hence we obtain

Theorem 65 The flows (4.3) and (4.4) admit the Hamiltonian formulation

@

@tp
· = {·, hp}1

@

@ t̄p
· = {·, h̃p}1

(4.32)

where the Hamiltonians are defined by (4.29).
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Chapter 5

Dispersionless limit

In this chapter we consider the dispersionless limit of the bigraded Toda and of the
two-dimensional Toda hierarchies.

The process of taking the dispersionless limit ✏ ! 0 of a bihamiltonian system is
the simplest instance of a general procedure of averaging that associates to the disper-
sive brackets and Hamiltonians their averaged counterparts. In general these averaged
systems are expected to be in correspondence with Frobenius manifolds; moreover in
the simplest case of the ✏! 0 limit the reconstruction of the whole dispersive hierarchy
from the associated Frobenius manifold has been developed in [19].

After having obtained the form of the dispersionless brackets and of the associated
metrics we will derive their generating functions. In the case of the bigraded Toda we
will show that the associated Frobenius manifold is given by a Hurwitz space of mero-
morphic functions with two poles. In the case of the two-dimensional Toda hierarchy
we will show that the first metric is non-degenerate and that the first bracket is given
by the direct sum of the first bracket for the bigraded Toda plus a bracket associated
to the algebra of divergence-free vector fields on the cylinder.

5.1 Dispersionless bigraded Toda hierarchy

In this section we consider the dispersionless limit of the first and second Poisson brack-
ets of the bigraded Toda hierarchy. Since these are Poisson brackets of hydrodynamic
type, they are naturally associated to a flat pencil of contravariant metrics. We write
down the explicit form of the metric and the associated Christo↵el symbols. Moreover
we obtain the generating functions associated to these quantities. Finally we show that
this hierarchy is associated to the Frobenius manifold given by the Hurwitz space of
meromorphic functions on the Riemann sphere with two poles.
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5.1.1 Poisson brackets

The dispersionless brackets {, }disp
i are obtained as the leading term of the dispersive

brackets (equations (3.95) and (3.96)) in the ✏! 0 limit, i.e.

{un(x), um(y)}i = ✏{un(x), um(y)}disp
i + O(✏2). (5.1)

In the case of the bigraded Toda hierarchy the variables are uN�1

, . . . , u�M with uN = 1
and N,M > 0. The explicit form of the brackets is

First bracket

{un(x), um(y)}disp
1

= 2(c(n)+c(m)�1)
⇥

(n+m)un+m�
0(x�y)+mu0n+m�(x�y)

⇤

(5.2)

Second bracket

{un(x), um(y)}disp
2

= �4munum�
0(x� y)� 4munu0m�(x� y)

+ 4
X

l<m

⇥

(n + m� 2l)un+m�lul�
0(x� y)

+ (n� l)un+m�lu
0
l�(x� y) + (m� l)u0n+m�lul�(x� y)

⇤

+
4
N

nmunum�
0(x� y) +

4
N

nmunu0m�(x� y). (5.3)

The last line in (5.3) is given by the correction term obtained by Dirac reduction. In
these equations, on the LHS the indices span the range �M 6 n, m 6 N � 1, while
on the RHS it is understood that uk = 0 for k > N or k < �M , and uN = 1. We
recall that here and in the following the costant c(n) is defined to be 1 for n > 0 and 0
otherwise.

5.1.2 Associated metrics and Christo↵el symbols

The dispersionless Poisson brackets (5.2) and (5.3) are of hydrodynamic type, i.e. they
are of the form

{un(x), um(y)}disp
1

= gnm�0(x� y) + �nm
k u0k�(x� y), (5.4a)

{un(x), um(y)}disp
2

= g̃nm�0(x� y) + �̃nm
k u0k�(x� y). (5.4b)

It is a well-known result of Dubrovin and Novikov (see [15]) that such brackets
satisfy the Jacobi identity if and only if the coe�cients gnm define a flat contravariant
metric and the coe�cients �k

ij := �gin�nk
j are the Christo↵el symbols of the Levi-Civita

connection associated with gij

�k
ij =

1
2
gkl(@iglj + @jgil � @lgij) (5.5)

where @i := @
@u

i

.
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For reference we write the explicit forms of the metric and the Christo↵el symbols
for the first bracket

gnm = 2(c(n) + c(m)� 1)(n + m)un+m (5.6)
�nm

k = 2(c(n) + c(m)� 1)m�k,n+m (5.7)

and for the second bracket

g̃nm = 4(
n

N
� 1)munum + 4

X

l<m

(n + m� 2l)ulun+m�l (5.8)

�̃nm
k = 4(

n

N
� 1)mun�k,m + 4

X

l<m

h

(n� l)un+m�l�k,l + (m� l)ul�k,n+m�l

i

. (5.9)

In these equations hold the same considerations on the ranges of the indices that were
given after (5.3).

5.1.3 Generating functions for the Poisson brackets

Here we want to obtain the generating functions for the dispersionless brackets (5.2)
and (5.3).

Let’s define the function

�(p, x) = pN + uN�1

pN�1 + · · ·+ u�Mp�M . (5.10)

The generating function for the bracket {, }disp
i is an expression {�(p, x),�(q, y)}disp

i

such that
{�(p, x),�(q, y)}disp

i =
X

n,m

{un(x), um(y)}disp
i pnqm, (5.11)

at least for the powers of p and q for which the RHS is defined.

Let’s start from the first bracket. Using the relation f(y)�0(x�y) = f(x)�0(x�y)+
f 0(x)�(x� y) we can rewrite (5.2) in the form

{un(x), um(y)}disp
1

= 2(c(n)+c(m)�1)
⇥

nun+m(x)�0(x�y)+mun+m(y)�0(x�y)
⇤

; (5.12)

substituting in (5.11) one finds

{�(p, x),�(q, y)}disp
1

= 2p
@

@p

 

X

n,m

(c(n) + c(m)� 1)un+m(x)pnqm

!

�0(x� y)+

+ 2q
@

@q

 

X

n,m

(c(n) + c(m)� 1)un+m(y)pnqm

!

�0(x� y) (5.13)

and, using the identity

X

n,m

(c(n) + c(m)� 1)un+m(x)pnqm =
�(q, x)q�1 � �(p, x)p�1

p�1 � q�1

, (5.14)
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finally obtains the desired generating function

Generating function for the first bracket

{�(p, x),�(q, y)}disp
1

= 2p
@

@p

✓

�(q, x)q�1 � �(p, x)p�1

p�1 � q�1

◆

�0(x� y)+

+ 2q
@

@q

✓

�(q, y)q�1 � �(p, y)p�1

p�1 � q�1

◆

�0(x� y). (5.15)

For the second dispersionless Poisson bracket we first consider the preliminary case
where uN is not yet fixed to 1. The bracket can be rewritten in the simpler form

{un(x), um(y)}disp
2

= �4mun(x)um(y)�0(x� y)+

+ 4
X

l<m

[(n� l)un+m�l(x)ul(y) + (m� l)ul(x)un+m�l(y)] �0(x� y). (5.16)

Then one has to substitute this in (5.11) and multiply both sides by (p�1 � q�1)2; one
then expresses the RHS in terms of products of � and derivatives; this calculation is
quite involved and we don’t report it here. Eventually we have to add the term due to
Dirac reduction to the a�ne subspace with uN = 1 that is given by

4
N

pq
@

@p
�(p, x)

@

@q
�(q, y); (5.17)

finally we obtain the

Generating function for the second bracket

{�(p, x),�(q, y)}disp
2

=
4
N

pq
@

@p
�(p, x)

@

@q
�(q, y)�0(x� y)+

+
4

p�1 � q�1

✓

�(p, x)
@

@q
�(q, y)� �(q, y)

@

@p
�(p, x)

◆

�0(x� y)+

+
4p�1q�1

(p�1 � q�1)2
(�(p, y)�(q, x)� �(p, x)�(q, y)) �0(x� y). (5.18)

Remark 66 As we already observed, the first bracket can be obtained as the linear
part of the second one. In particular the following relation holds between the generating
functions

1
2
{�(p, x),�(q, y)}disp

2

�

�

�

�!�+"
=

1
2
{�(p, x),�(q, y)}disp

2

+ "{�(p, x),�(q, y)}disp
1

. (5.19)

This suggests to write the generating function for the linear bracket as

{�(p, x),�(q, y)}disp
1

=
2

p�1 � q�1

✓

@

@q
�(q, y)� @

@p
�(p, x)

◆

�0(x� y)+

+
2p�1q�1

(p�1 � q�1)2
(�(q, x) + �(p, y)� �(p, x)� �(q, y)) �0(x� y). (5.20)
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5.1.4 Generating functions for the metrics

Using the generating functions for the Poisson brackets here we derive the generating
functions for the associated contravariant metrics.

The bilinear forms (, )i associated to the metrics gnm and g̃nm are extended on
di↵erentials d�(p) of the form

d�(p) = duN�1

pN�1 + · · ·+ du�Mp�M (5.21)

simply by

(d�(p), d�(q))
1

=
X

nm

gnmpnqm, (d�(p), d�(q))
2

=
X

nm

g̃nmpnqm. (5.22)

Then, from (5.18) and (5.20), we easily get the expressions

(d�(p), d�(q))
1

= 2
�0(q)� �0(p)
p�1 � q�1

(5.23)

and

(d�(p), d�(q))
2

=
4
N

pq�0(p)�0(q) +
4

p�1 � q�1

�

�(p)�0(q)� �(q)�0(p)
�

. (5.24)

Remark 67 The formula (5.23) is an analogue of the formula of Saito, Yano and
Sekiguchi [41] that provides an invariant quadratic form on a space of polynomials
associated to finite Coxeter groups.

5.1.5 Hurwitz spaces and Frobenius manifold associated to the dis-
persionless bigraded Toda hierarchy

After briefly recalling the definition of the Hurwitz spaces and of their coverings we show
that the pencil of metrics defining the Frobenius structure of such spaces coincides with
the one obtained from the dispersionless limit of the Poisson pencil of the bigraded Toda
hierarchy.

The Hurwitz spaces are moduli spaces of Riemann surfaces C of genus g with an
n + 1 branched covering � of CP1 with fixed ramification type over 1 2 CP1. More
precisely a point in the Hurwitz space Mg;n0,...,n

m

is given by an equivalence class of
pairs (C,�) where C is a compact Riemann surface of genus g and � : C ! CP1

a meromorphic function of degree n + 1 such that the degrees of the ramification
at the points 1

0

, . . . ,1m 2 C over the point at infinity 1 2 CP1 are respectively
n

0

+1, . . . , nm +1. Two pairs (C,�) and (C̃, �̃) are identified if there exists an analytic
isomorphism ✓ : C ! C̃ such that � � ✓ = �̃.

In [10] it is shown how to construct a Frobenius manifold structure on a covering
of Mg;n0,...,n

m

corresponding to a fixation of a symplectic basis of cycles in the first
homology group of C and to a choice of primary di↵erential dp. Factorization by
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the group of changes of the basis gives a twisted Frobenius manifold structure on the
Hurwitz space.

For the general construction of the Frobenius manifold structure on the Hurwitz
space see Lecture 5 in [10]. Here we will simply consider the Hurwitz space correspond-
ing to the case of the bigraded Toda hierarchy.

Consider the case with g = 0, m = 1, n
0

= M � 1 and n
1

= N � 1 for two positive
integers N , M . The (covering of the) corresponding Hurwitz space is given by the
space of functions

�(z) = zN + uN�1

zN�1 + · · ·+ u�Mz�M (5.25)

with u�M 6= 0 and z 2 C and the primary di↵erential is defined by dp = dz
z .

As is well known from [13], the Frobenius structure on a manifold is uniquely
specified by a flat pencil of metrics. From the general construction of the Frobenius
manifold on a Hurwitz space we have that the corrisponding flat pencil of metrics is
given by

(@0, @00)
1

=
1
2

X

|�|<1

Resd�=0

@0(�dz)@00(�dz)
z2d�

(5.26)

and by

(@0, @00)
2

=
1
4

X

|�|<1

Resd�=0

@0(log � dz)@00(log � dz)
z2d log �

. (5.27)

Another pencil of flat metrics has been defined on a space with coordinates uN�1

, . . . , u�M

by the dispersionless limit of the bihamiltonian structure of the bigraded Toda hierarchy
considered previously.

We now show that these two pencils coincide.

Proposition 68 The (covariant) metrics (5.26) and (5.27) are the inverse of the (con-
travariant) metrics (5.6) and (5.8).

Proof Let’s start from the first metric. We want to show that

N�1

X

m=�M

gnmgmk = �nk (5.28)

where gnm is given by (5.6) and, from (5.26)

gmk =
1
2

X

|�|<1

Res�
z

=0

zm+k�1

z�z
dz. (5.29)

Now multiply (5.28) by wn, sum on �M 6 n 6 N �1 and then the generating function
(5.23); then we have to show that

X

|�|<1

Res�
z

=0

(�w(w)� �z(z))zk�1

(z�1 � w�1)z�z
dz = wk. (5.30)
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In the LHS the term �z(z) in the numerator doesn’t contribute, since it cancels with
the denominator and gives a function without poles in �z = 0. Hence the LHS is given
by the following sum of three residues

(Resz=0

+Resz=1+Resz=w)
w�w(w)zk

(z � w)z�z
dz. (5.31)

The residue in z = w gives exactly the desired result wk, while it is easy to show, using
the fact that �M 6 k 6 N � 1, that the other two residues are 0.

The analogous result for the second metric is obtained in the same way: multiplying
the product of the two metrics as before by wn and summing on n, one needs to show,
after substitution of the generating function (5.24), that

X

|�|<1

Res�
z

=0

w�w(w)zk�1

N�
dz �

X

|�|<1

Res�
z

=0

�(w)zk�1

(z�1 � w�1)z�
dz+

+
X

|�|<1

Res�
z

=0

�w(w)zk�1

(z�1 � w�1)z�z
dz = wk. (5.32)

The first two terms on the LHS vanish since they don’t have poles in �z = 0. The third
term gives exactly the same sum of residues (5.31) as before. ⇤

From this result it actually follows that the Frobenius manifold associated to the
dispersionless limit of the bigraded Toda hierarchy is given by the Hurwitz space
M

0;M�1,N�1

.

An observation based on the proof of the first part of the previous Proposition is
the following

Proposition 69 The first metric (5.26) has the form

(@0, @00)
1

= �Resz=1
@0�>0

@00�>0

z2(�>0

)z
dz � Resz=0

@0�60

@00�60

z2(�60

)z
dz. (5.33)

Proof Consider, in the coordinates ui, the term

Resz=0

@
@u

i

� @
@u

j

�

z2(�)z
dz; (5.34)

expanding close to z = 0 it gives

⇠ Resz=0

dz

z
zi+j zM (1 + O(z)) (5.35)

hence it is non zero only for i + j 6 �M , i.e. it is necessary that both i, j are 6 0.
Then it is clear that only the �60

part is relevant. An analogous proof holds for the
second term in (5.33). ⇤
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Remark 70 Finally we recall, from [18], the prescription for the flat coordinates of
the first metric. These are given by

t↵ =
1
2

Resz=1 �
N�↵

N

dz

z
1 6 ↵ 6 N � 1 (5.36a)

t↵ =
1
2

Resz=0

�
M+↵

M

dz

z
�M + 1 6 ↵ 6 0 (5.36b)

t�M =
1

4M
log u�M . (5.36c)

Notice that these are the Casimirs of the first dispersionless Poisson bracket.

5.2 Dispersionless two-dimensional Toda hierarchy

In this section we consider the dispersionless limit of the first and second Poisson
brackets of the two-dimensional Toda hierarchy. In this case the hierarchy has an infinite
number of independent variables; thus to these hydrodynamic brackets we can associate
a pencil of infinite dimensional contravariant metrics. We write down the explicit forms
of the metrics and the Christo↵el symbols. We obtain generating functions for the
brackets and the metrics.

Then we prove that the first metric is non-degenerate; this gives a first hint that an
infinite dimensional Frobenius manifold should be associated to this pencil of metrics.

We finally make a change of variables and show that the first Poisson bracket splits
in two parts: a finite dimensional part that corresponds exactly to the first bracket
of the Toda chain and an infinite dimensional part that, in Fourier coordinates, is the
Poisson-Lie bracket on the dual of the algebra of potentials associated to divergence-free
vector fields.

We have considered here only the case N = M = 1, however the results are easily
modified to hold in the general N,M case.

5.2.1 Poisson brackets

As in the bigraded case the dispersionless brackets are obtained in the limit ✏! 0 (see
(5.1)) of the brackets (4.19) and (4.25). In this case the variables are uk with k < 1
and ūl with l > �1. The explicit form of the brackets is
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First bracket

{un(x), um(y)}disp
1

= �2
⇥

(n + m)un+m�
0(x� y) + mu0n+m�(x� y)

⇤

(5.37a)

{un(x), ūm(y)}disp
1

= �2c(m)
⇥

(n + m)un+m�
0(x� y) + mu0n+m�(x� y)

⇤

� 2
⇥

(n + m)ūn+m�
0(x� y) + mū0n+m�(x� y)

⇤

(5.37b)

{ūn(x), um(y)}disp
1

= �2c(n)
⇥

(n + m)un+m�
0(x� y) + mu0n+m�(x� y)

⇤

� 2
⇥

(n + m)ūn+m�
0(x� y) + mū0n+m�(x� y)

⇤

(5.37c)

{ūn(x), ūm(y)}disp
1

= 2(1� c(m)� c(n))
⇥

(n + m)ūn+m�
0(x� y) + mū0n+m�(x� y)

⇤

,
(5.37d)

Second bracket

{un(x), um(y)}disp
2

= 4m(n� 1)unum�
0(x� y) + 4m(n� 1)unu0m�(x� y)

+ 4
X

l<m

⇥

(n + m� 2l)un+m�lul�
0(x� y)

+ (n� l)un+m�lu
0
l�(x� y) + (m� l)u0n+m�lul�(x� y)

⇤

(5.38a)

{un(x), ūm(y)}disp
2

= 4m(n� 1)unūm�
0(x� y) + 4m(n� 1)unū0m�(x� y)

+ 4
X

l<m

[�(n + m)un+m�lūl�
0(x� y)

+ (l �m)u0n+m�lūl�(x� y)� (n + 2m� l)un+m�lū
0
l�(x� y)]

(5.38b)

{ūn(x), um(y)}disp
2

= 4n(m� 1)umūn�
0(x� y) + 4n(m� 1)u0mūn�(x� y)

� 4
X

l<n

⇥

(n + m)un+m�lūl�
0(x� y)

+ (l + m)u0n+m�lūl�(x� y)� (n� l)un+m�lū
0
l�(x� y)

⇤

(5.38c)

{ūn(x), ūm(y)}disp
2

= 4n(1 + m)ūnūm�
0(x� y) + 4n(1 + m)ūnū0m�(x� y)

+ 4
X

k>m

⇥

(n + m� 2k)ūn+m�kūk�
0(x� y)

+ (n� k)ūn+m�kū
0
k�(x� y) + (m� k)ū0n+m�kūk�(x� y)

⇤

.
(5.38d)

It is understood that on the RHS of these formulas ūk = 0 for k < �1 and uk = 0 for
k > 0 and u

1

is set to 1. In each of the quadratic brackets one can easily recognize the
term due to Dirac reduction to the a�ne subspace u

1

= 1.

5.2.2 Associated metrics and Christo↵el symbols

We define the metric gn̂m̂ and the Christo↵el symbols �n̂m̂
ˆk

associated to the first metric
by

{un̂(x), um̂(y)}disp
1

= gn̂m̂�0(x� y) + �n̂m̂
ˆk

u0
ˆk
�(x� y). (5.39)

As in the previous formula, an index with hat, like m̂, will be sometimes used to indicate
that it spans both the values of m and m̄. In (5.39) it is understood that un̄ = ūn.
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We obtain that the metric is

gnm = �2(n + m)un+m (5.40a)
gnm̄ = �2c(m)(n + m)un+m � 2(n + m)ūn+m (5.40b)
gn̄m = �2c(n)(n + m)un+m � 2(n + m)ūn+m (5.40c)
gn̄m̄ = 2(1� c(n)� c(m))(n + m)ūn+m (5.40d)

and the Christo↵el symbols

�nm
k = �2m�k,n+m �nm

¯k = 0 (5.41a)
�nm̄

k = �2c(m)m�k,n+m �nm̄
¯k = �2m�k,n+m (5.41b)

�n̄m
k = �2c(n)m�k,n+m �n̄m

¯k = �2m�k,n+m (5.41c)
�n̄m̄

k = 0 �n̄m̄
¯k = 2(1� c(n)� c(m))m�k,n+m. (5.41d)

For the second bracket we have

{un̂(x), um̂(y)}disp
2

= g̃n̂m̂�0(x� y) + �̃n̂m̂
ˆk

u0
ˆk
�(x� y) (5.42)

and we find that the metric is

g̃nm = 4m(n� 1)unum + 4
X

l<m

(n + m� 2l)un+m�lul (5.43a)

g̃nm̄ = 4m(n� 1)unūm � 4
X

l<m

(n + m)un+m�lūl (5.43b)

g̃n̄m̄ = 4n(m + 1)ūnūm + 4
X

k>m

(n + m� 2k)ūn+m�kūk (5.43c)

and the Christo↵el symbols

�̃nm
k = 4m(n� 1)un�k,m + 4

X

l<m

[(n� l)un+m�l�k,l + (m� l)ul�k,n+m�l] (5.44a)

�̃nm
¯k = 0 (5.44b)

�̃nm̄
k = 4

X

l<m

(l �m)ūl�k,n+m�l (5.44c)

�̃nm̄
¯k = 4m(n� 1)un�k,m � 4

X

l<m

(n + 2m� l)un+m�l�k,l (5.44d)

�̃n̄m
k = 4n(m� 1)ūn�k,m � 4

X

l<n

(l + m)ūl�k,n+m�l (5.44e)

�̃n̄m
¯k = 4

X

l<n

(n� l)un+m�l�k,l (5.44f)

�̃n̄m̄
k = 0 (5.44g)

�̃n̄m̄
¯k = 4n(1 + m)ūn�k,m + 4

X

l>m

[(n� l)ūn+m�l�k,l + (m� l)ūl�k,n+m�l]. (5.44h)

In all these formulas the indices on the LHS span the ranges n, m 6 0 and n̄, m̄ > �1;
moreover the same considerations that were given after (5.38) apply.
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5.2.3 Generating functions for the Poisson brackets

Here we write the generating functions for the dispersionless Poisson brackets (5.37)
and (5.38).

Let’s define the functions � and �̄

�(p, x) =
X

k61

uk(x)pk, �̄(p, x) =
X

k>�1

ūk(x)pk. (5.45)

As in the bigraded Toda case we have to rewrite the first Poisson brackets in a form
similar to (5.12); then, essentially applying identities like (5.14), one obtains

Generating functions for the first bracket

{�(p, x),�(q, y)}
1

= 2p
@

@p



�(q, x)q�1 � �(p, x)p�1

p�1 � q�1

�

�0(x� y)

+ 2q
@

@q



�(q, y)q�1 � �(p, y)p�1

p�1 � q�1

�

�0(x� y), (5.46a)

{�(p, x), �̄(q, y)}
1

= 2p
@

@p



�̄(q, x)q�1 + �(p, x)p�1

p�1 � q�1

�

�0(x� y)

+ 2q
@

@q



�̄(q, y)q�1 � �(p, y)p�1

p�1 � q�1

�

�0(x� y), (5.46b)

{�̄(p, x), �̄(q, y)}
1

= 2p
@

@p



�̄(p, x)p�1 � �̄(q, x)q�1

p�1 � q�1

�

�0(x� y)

+ 2q
@

@q



�̄(p, y)p�1 � �̄(q, y)q�1

p�1 � q�1

�

�0(x� y). (5.46c)

For the second dispersionless Poisson brackets one has essentially to follow the same
steps as in the bigraded Toda case: first write the brackets in a form similar to (5.16)
and then substitute in (5.11) to obtain the generating functions.

The main di↵erence is in the equation

{un(x), ūm(y)}disp
2

= 4m(n� 1)un(x)ūm(y)�0(x� y)+

+ 4
X

l<m

⇥

(l �m)ūl(x)un+m�l(y) + (l � n� 2m)un+m�l(x)ūl(y)+

+ 2(m� l)un+m�l(x)ūl(x)
⇤

�0(x� y) (5.47)

since the last term has both factors evaluated in x.

Thus we obtain
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Generating functions for the second bracket

{�(p, x),�(q, y)}disp
2

=
4

p�1 � q�1

✓

�(p, x)
@

@q
�(q, y)� �(q, y)

@

@p
�(p, x)

◆

�0(x� y)+

+
4p�1q�1

(p�1 � q�1)2
(�(q, x)�(p, y)� �(p, x)�(q, y)) �0(x� y)+

+ 4pq
@

@p
�(p, x)

@

@q
�(q, y)�0(x� y) (5.48a)

{�(p, x), �̄(q, y)}disp
2

=
4

p�1 � q�1

✓

�(p, x)
@

@q
�̄(q, y) + �̄(q, y)

@

@p
�(p, x)

◆

�0(x� y)+

+
4p�1q�1

(p�1 � q�1)2
�

2�(p, x)�̄(q, x)� �̄(q, x)�(p, y)� �(p, x)�̄(q, y)
�

�0(x� y)+

+ 4pq
@

@p
�(p, x)

@

@q
�̄(q, y)�0(x� y) (5.48b)

{�̄(p, x), �̄(q, y)}disp
2

=
4

p�1 � q�1

✓

��̄(p, x)
@

@q
�̄(q, y) + �̄(q, y)

@

@p
�̄(p, x)

◆

�0(x� y)+

+
4p�1q�1

(p�1 � q�1)2
�

��̄(q, x)�̄(p, y) + �̄(p, x)�̄(q, y)
�

�0(x� y)+

+ 4pq
@

@p
�̄(p, x)

@

@q
�̄(q, y)�0(x� y). (5.48c)

Remark 71 As in the bigraded case the first brackets (5.46) can be obtained as linear
part of the second bracket after the shift �! �+ " and �̄! �̄+ ".

Remark 72 The same generating functions (5.46) for the first brackets hold in the
general N , M case. For the generating functions (5.48) of the second bracket one needs
to divide by N the Dirac correction term (the last line in each of the equations (5.48)).

5.2.4 Generating functions for the metrics

As was done for the bigraded Toda, we can extend the bilinear forms (, )i associated to
the contravariant metrics gn̂m̂ and g̃n̂m̂ on the di↵erentials

d�(p) =
X

k<1

dukp
k, d�̄(p) =

X

k>�1

dūkp
k. (5.49)

Then from (5.46) and (5.48) we get

Generating functions for the first metric

(d�(p), d�(q))
1

= 2
�0(q)� �0(p)
p�1 � q�1

(5.50a)

(d�(p), d�̄(q))
1

= 2
�0(p) + �̄0(q)
p�1 � q�1

(5.50b)

(d�̄(p), d�̄(q))
1

= 2
�̄0(p)� �̄0(q)
p�1 � q�1

(5.50c)
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and

Generating functions for the second metric

(d�(p), d�(q))
2

=
4

p�1 � q�1

�

�(p)�0(q)� �(q)�0(p)
�

+ 4pq�0(p)�0(q) (5.51a)

(d�(p), d�̄(q))
2

=
4

p�1 � q�1

�

�(p)�̄0(q) + �̄(q)�0(p)
�

+ 4pq�0(p)�̄0(q) (5.51b)

(d�̄(p), d�̄(q))
2

=
4

p�1 � q�1

�

��̄(p)�̄0(q) + �̄(q)�̄0(p)
�

+ 4pq�̄0(p)�̄0(q). (5.51c)

5.2.5 The first metric is non-degenerate

Here we show that the metric associated to the first Poisson bracket of the dispersionless
2-dimensional Toda hierarchy is non-degenerate; this gives a first hint of the existence
of an associated infinite dimensional Frobenius manifold.

Proposition 73 The metric gn̂m̂ is non-degenerate.

Proof We essentially want to show that
X

m̂

gn̂m̂vm̂ = 0 =) vm̂ = 0 (5.52)

for generic values of the entries of the metric. Here vm̂ is a vector with components
vm for m < 1 and v̄m̄ with m̄ > �1. If we explicit the above equation for n̄ = �1 and
n̄ = 0 we obtain

v
0

= v̄
0

and v�1

= v̄�1

(5.53)

respectively.

If we introduce the variable wm such that

wm =

(

vm m 6 0
v̄m m > 0

(5.54)

then the equation (5.52) becomes
X

n2Z
(n + m)(un+m + ūn+m)wm = 0. (5.55)

Using the Fourier series

u(x) =
X

n2Z
einxnun, w(x) =

X

n2Z
e�inxwn (5.56)

one finds that (5.55) is equivalent to

u(x)w(x) = 0 (5.57)

thus implying, for generic u(x) and together with (5.53), that all the components vm̂

are zero. ⇤
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5.2.6 A new set of coordinates

We introduce a new set of coordinates obtained from the splitting that gives the R-
matrix for the two-dimensional Toda. The first dispersionless Poisson bracket splits
into two independent parts and the associated metric splits in diagonal blocks.

Let’s consider the coordinates w
0

, w�1

and vk, k 2 Z, defined by

(

w
0

= ū
0

w�1

= ū�1

vk =

8

>

>

>

>

>

>

<

>

>

>

>

>

>

:

uk k < �1
u�1

+ ū�1

k = �1
u

0

+ ū
0

k = 0
1 + ū

1

k = 1
ūk k > 1.

(5.58)

The first Poisson bracket (5.37) in these coordinated becomes

{w
0

(x), w
0

(y)}disp
1

= {w�1

(x), w�1

(y)}disp
1

= 0 (5.59a)

{w
0

(x), w�1

(y)}disp
1

= �2w�1

(y)�0(x� y) (5.59b)

{w�1

(x), w
0

(y)}disp
1

= �2w�1

(x)�0(x� y) (5.59c)

{wn(x), vm(y)}disp
1

= 0 n = 0, 1 m 2 Z (5.60)

{vn(x), vm(y)}disp
1

= �2[nvn+m(x) + mvn+m(y)]�0(x� y) n, m 2 Z (5.61)

The coordinates wk give exactly the first bracket for the first bracket of the Toda
chain (i.e. bigraded Toda with N = M = 1).

The metric is given by

X

n,m2Z
(n + m)vn+m

@

@vn

@

@vm
+ w�1

✓

@

@w
0

@

@w�1

+
@

@w�1

@

@w
0

◆

. (5.62)

Since the w-block of the metric exactly coincides with the metric of the Toda chain we
can readily write down the first two flat coordinates: w

0

and log w�1

.

5.2.7 Generating function in Fourier coordinates

First let’s write down a generating function for the v-block of the metric. Defining

v(x) =
X

n

vneinx (5.63)
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it easily follows

X

nm

vn+meinx+imy =
X

nm

1
2⇡

Z

e�i(n+m)zv(z)dzeinx+imy

=
1
2⇡

Z

v(z)
X

n

ein(x�z)

X

m

eim(y�z)dz

= 2⇡
Z

v(z)�(x� z)�(y � z)dz

= 2⇡
Z

v(z)�(y � z)dz �(x� y)

= 2⇡v(x)�(x� y). (5.64)

Now we have
X

nm

(n + m)vn+meinxeimy = �i

✓

@

@x
+

@

@y

◆

X

nm

vn+meinx+imy (5.65)

= �2⇡i

✓

@

@x
+

@

@y

◆

v(x)�(x� y) (5.66)

= �2⇡iv0(x)�(x� y). (5.67)

Hence the generating function for the metric (dvn, dvm) = gnm is given by

(dv(x), dv(y)) = �2⇡iv0(x)�(x� y) (5.68)

with dv(x) =
P

n dvneinx.

We can also obtain the generating function for the infinite dimensional part of the
first Poisson bracket; defining

v(x, y) =
X

n

vn(x)einy (5.69)

and following essentially the same steps above we obtain

{v(x
1

, y
1

), v(x
2

, y
2

)}disp
1

= �4⇡i
⇥

@x1v(x
1

, y
1

) · �(x
1

� x
2

)�0(y
1

� y
2

)
� @y1v(x

1

, y
1

) · �0(x
1

� x
2

)�(y
1

� y
2

)
⇤

. (5.70)

5.2.8 Poisson brackets of divergence-free vector fields

In this section we want to show that the generating function for the first bracket in
the coordinates v is the natural Poisson-Lie bracket associated to the potentials of
divergence-free vector fields on a cylinder.

Let’s consider, first of all, the Lie algebra V of vector fields v = (v
1

(x), . . . , vN (x))
on RN with coordinates x

1

, . . . , xN . The commutator of two vector fields is simply

[v, w]j(x) = vi
@

@xi
wj � wi

@

@xi
vj . (5.71)
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We denote an element of the dual space V⇤ by p = (p
1

(x), . . . , pn(x)); the pairing
between elements of the algebra and the dual is given by

< p, v >=
Z

dNx(p
1

(x)v
1

(x) + · · ·+ pN (x)vN (x)). (5.72)

The commutator induces on V⇤ the Poisson-Lie bracket by the usual formula

{f, g}(p) =< p, [df, dg] >, (5.73)

where f and g are functionals on V⇤. If we choose functionals of the form f [p] = pj(y)
we obtain

{pi(x), pj(y)} = pj(x)
@

@xi
�(x� y) + pi(y)

@

@xj
�(x� y) (5.74)

where, of course, �(x� y) = �(x
1

� y
1

) · · · �(xN � yN ).

Now consider the divergence-free vector fields on the plane (N = 2) with coordinates
x, y. For the vector field v = (vx, vy) the condition 0 = divv = @

@xvx + @
@yvy implies the

existence of a potential f(x, y) such that

vx = �@f

@y
vy =

@f

@x
. (5.75)

In this case the commutator of the vector fields induces a Lie algebra structure on
the space P of potentials

[f, g] = fxgy � fygx (5.76)

such that
[Vf , Vg] = V

[f,g]

(5.77)

where by Vf we indicate the vector field associated to the potential f by (5.75).

The dual space P⇤ will be given by functions ! with a pairing with P given by

< !, f >=
Z

dx dy !f (5.78)

for ! 2 P⇤ and f 2 P.

The transpose of the map f 7! Vf from P to V is given by the map that associates
to p = (px, py) 2 V⇤ the vorticity !p 2 P⇤

!p :=
@px

@y
� @py

@x
(5.79)

since we have
< !p, f >=< p, Vf > . (5.80)

The Lie algebra structure (5.76) on P defines a Poisson-Lie bracket on the P⇤; a
straightforward calculation shows that this bracket is given by

{v(x
1

, y
1

), v(x
2

, y
2

)} = vx1(x1

, y
1

)�(x
1

�x
2

)�0(y
1

�y
2

)�vy1(x1

, y
1

)�0(x
1

�x
2

)�(y
1

�y
2

)
(5.81)
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for v(x, y) 2 P⇤, i.e. exactly the generating function obtained in the previous section
(up to a factor).

Of course one can obtain the same bracket on P⇤ simply from (5.74) substituting
the formula (5.79).

Notice that in the case of an incompressible fluid the space V and the dual V⇤ are
identified through

px = ⇢vx (5.82a)
py = ⇢vy (5.82b)

where ⇢ is the constant density, thus obtaining the construction of [39].

We can now state the following theorem on the structure of the first dispersionless
Poisson bracket

Theorem 74 The dispersionless limit of the first Poisson bracket of the two-dimensional
Toda is isomorphic to the direct sum of the first Poisson bracket of the dispersionless
Toda chain with the brackets (5.81) associated to an incompressible fluid on the cylin-
der.

85



Chapter 6

Conclusions

In this thesis we have studied three related integrable hierarchies of Toda type. Let’s
summarize our results in each case.

We have considered first the extended Toda chain hierarchy. We have defined
the logarithm of the di↵erence operator L and used it to obtain a Lax representation
for additional non-local flows. Then we have introduced the bihamiltonian formalism,
expressing the non-local Hamiltonians in terms of traces of L and log L. We have shown
the existence of a tau function and we have obtained the bilinear relations for the wave
operators and the wave functions. Finally we have obtained the soliton solutions.

We have then generalized some of these results to the case of the bigraded Toda
hierarchy. We have first defined the logarithm and two fractional powers of L and
introduced the flows of the hierarchy through their Lax representation. We have then
obtained a pair of Poisson brackets on the space of bigraded di↵erence operators and
expressed the flows of the hierarchy in Hamiltonian form using the first bracket. Finally
we have shown that also in this case a tau function can be defined.

On the algebra of pairs of di↵erence operators A+�A�, we have introduced an R-
matrix associated to a non-trivial splitting and we have used it to obtain a bihamiltonian
structure for the two-dimensional Toda hierarchy. Then we have expressed the
well-known Lax flows of this hierarchy in Hamiltonian form through the first Poisson
bracket.

Finally we have considered the dispersionless limit of the Poisson pencils associ-
ated to the bigraded and the two-dimensional Toda hierarchies. In both cases we have
obtained the generating functions for such pencils of Poisson brackets and also for the
associated pencils of metrics. We have then related the dispersionless bigraded Toda
hierarchy to the Frobenius manifold structure on the Hurwitz space M

0;M�1,N�1

. In
the case of the two-dimensional hierarchy we have shown that the first Poisson bracket
splits in the direct sum of the first bracket of the Toda chain with the Poisson bracket
associated to an incompressible fluid on the cylinder.

We recall the main open points and lines of future research.

• Starting from the simpler case of the extended Toda chain, one should consider
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the behaviour of interesting classes of solutions under the non-local flows. In par-
ticular the similarity solutions satisfy ordinary di↵erential-di↵erence equations
that should be analogues of the Painlevé equations. The algebro-geometric
quasiperiodic solutions should be tractable through some modification of the
usual method of the Baker-Akhiezer function on a Riemann surface.

• Still in the case of the extended Toda chain, one needs to obtain the Hirota
bilinear relation for the tau function. To this purpose one should use the
bilinear relations for the wave operators and the wave functions that were obtained
in Chapter 2. This problem is also connected with the covariance under the
Darboux transformations that we have assumed in the derivation of the soliton
solutions.

• In the extended bigraded Toda hierarchy case, the main missing point is the deter-
mination of the recursion relation for the Hamiltonians. The explicit method
used in the Toda chain case fails to work for the general bigraded hierarchy.

• The construction of a Poisson-Lie group of pseudo-di↵erential operators done in
[32, 33] should be possibly extended to the case of di↵erence operators. One of
course doesn’t expect to have a Poisson-Lie group in this case, but a twisted
Poisson structure [36] on a Lie group of di↵erence operators with complex lead-
ing exponent. This framework should provide a natural characterization of the
logarithm as the inverse of the exponential map connecting the Lie algebra and
the group.

• It is important, in particular, to complete the study of the Frobenius manifold
associated to the bigraded two-dimensional Toda hierarchy. This turns out to be
an infinite dimensional manifold that naturally splits in a part corresponding to
the bigraded Toda hierarchy plus a infinite dimensional part. One expects that an
explicit realization of such manifold, in analogy with the realization as an Hurwitz
space of the Frobenius manifold associated to the bigraded Toda hierarchy, could
be linked to a space of conformal maps. Work in this direction is in progress.

• A general line of research, that we have already stressed in the introduction, is
to construct the full dispersive hierarchies associated to the Dynkin diagrams
Bl, Cl, . . . . In this thesis we have shown that the bigraded Toda hierarchy is
associated with the Al root system with a fixed root. A possible hint on the inte-
grable systems associated to the other root systems is given by the construction
of Frenkel-Reshetikhin of deformations of W -algebras associated to simple Lie
algebras [26].
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